-
To further explore the mechanism of self-pulsing discharge, a sandwiched microcavity cathode is used to study this phenomenon in argon. With the increases of discharge current, the discharge undergoes Townsend discharge, self-pulsing discharge and normal glow discharge. A complete self-pulsing discharge consists of the rising edge, the falling edge of the discharge current, and the waiting period of the discharge. The spatiotemporal dynamic characteristic of self-pulsing discharge is simulated by using a fluid model. The simulated results indicate that when the self-pulsing discharge current reaches its minimum value, the discharge is confined inside the cathode cavity. The electric field, electron density and electron generate rate are low, resulting in a Townsend discharge mode. As the discharge current increases, the discharge inside the cavity is strengthened, and the discharge gradually extends from the inside of the cavity to the outside. When the current reaches its maximum value, there exists a strong discharge outside the cavity, and an obvious cathode sheath is formed near the outer surface of the cathode, resulting in a high electron generate rate outside the cavity. When the discharge current decreases, the discharge shrinks from the outside to the inside of the cavity, and finally returns to the Townsend discharge mode. The simulated results also indicate that the ionization source varies depending on the stage of self-pulsing discharge, specifically, direct ionization is dominant when the current is high, and Penning ionization plays a major role in the pulse waiting period when the current reaches its minimum value. The experimental and simulation results indicate that the self-pulsing discharge in a micro-cavity cathode is essentially a process of mode transition between the Townsend discharge mode where the discharge is confined within the cavity and the normal glow discharge mode where the discharge region extends to the outside of the hole.
-
Keywords:
- self-pulsing discharge /
- hollow cathode discharge /
- mode transition /
- fluid model
-
表 1 碰撞反应类型
Table 1. Collision reactions in the model.
-
[1] 王震, 赵志航, 付洋洋 2024 73 125201
Wang Z, Zhao Z H, Fu Y Y 2024 Acta Phys. Sin. 73 12501
[2] Wei H C, Wang N, Duan Z C, He F 2018 Phys. Plasmas 25 123513
Google Scholar
[3] 邝勇, 章程, 胡修翠, 任晨华, 陈根永, 邵涛 2023 电工技术学报 38 3960
Kuang Y, Zhang C, Hu X C, Ren C H, Chen G Y, Shao T 2023 Trans. Chin. Electrotech. Soc. 38 3960
[4] 郭昱均, 季启政, 何锋, 廖劲松, 张宇, 欧阳吉庭 2019 高电压技术 45 820825
Guo Y J, Ji Q Z, He F, Liao J S, Zhang Y, Ouyang J T 2019 High Voltage Eng. 45 820825
[5] Saifutdinov A I, Sysoev S S 2023 Plasma Sources Sci. Technol. 32 114001
Google Scholar
[6] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰 2022 71 025201
Google Scholar
Zhao L F, Ha J, Wang F F, Li Q, He S J 2022 Acta Phys. Sin. 71 025201
Google Scholar
[7] Schoenbach K H, Kurt B 2016 Eur. Phys. J. D 70 29
Google Scholar
[8] 欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673684
Ouyang J T, Zhang Y, Qin Y 2016 High Voltage Eng. 42 673684
[9] Truscott B S, Turner C, May P W 1997 Plasma Sources Sci. Technol. 6 468477
[10] Aubert X, Bauville G, Guillon J, Lacour B, Puech V, Rousseau A 2007 Plasma Sources Sci. Technol. 16 2332
[11] Qin Y, He F, Jiang X X, Xie K, Ouyang J T 2014 Phys. Plasmas 21 073501
Google Scholar
[12] Qin Y, Xie K, Zhang Y, Ouyang J T 2016 Phys. Plasmas 23 023501
Google Scholar
[13] Hsu D D, Graves D B 2003 J. Phys. D: Appl. Phys. 36 28982907
[14] Taylan O, Berberoglu H 2014 J. Appl. Phys. 116 043302
Google Scholar
[15] Lazzaroni C, Charbrert P 2011 Plasma Sources Sci. Technol. 20 20332038
[16] Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722733
[17] Ferreira C M, Loureiro L, Richard A 1985 J. Appl. Phys. 57 82
Google Scholar
[18] Karoulina E V, Lebedev Y A 1992 J. Phys. D: Appl. Phys. 25 401
Google Scholar
[19] Biondi M A 1963 Phys. Rev. 129 1181
Google Scholar
[20] Shon Jong W, Kushner M J 1994 J. Appl. Phys. 75 1883
Google Scholar
[21] He S J, Wang P, Ha J, Zhang B M, Zhang Z, Li Q 2018 Plasma Sci. Technol. 20 054006
Google Scholar
[22] Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514
Google Scholar
[23] Cui R L, He F, Miao J S, Ouyang J T 2017 Phys. Plasmas 24 103524
Google Scholar
[24] Chen S, Li K L, Nijdam S 2019 Plasma Sources Sci. Technol. 28 055017
Google Scholar
[25] 高嘉懋 2022 硕士学位论文 (武汉: 华中科技大学)
Gao J M. 2022 M. S. Thesis (Wuhan: Huazhong University of Science and Technology
[26] Levko D, Raja L 2021 J. Phys. D: Appl. Phys. 54 235201
Google Scholar
[27] Arslanbekov R R, Kolobov V I 2003 J. Phys. D: Appl. Phys. 36 2986
Google Scholar
Metrics
- Abstract views: 368
- PDF Downloads: 2
- Cited By: 0