搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微空心阴极自脉冲放电微观动力学过程

梁远毅 方振松 贺亚峰 李庆 何寿杰

引用本文:
Citation:

微空心阴极自脉冲放电微观动力学过程

梁远毅, 方振松, 贺亚峰, 李庆, 何寿杰

Experiment and simulation on spatiotemporal microscopic dynamics of self-pulsing discharge in micro-hollow cathode

LIANG Yuanyi, FANG Zhensong, HE Yafeng, LI Qing, HE Shoujie
PDF
HTML
导出引用
  • 为了进一步揭示自脉冲放电机理, 本文对氩气环境下的微空心阴极自脉冲放电进行了实验研究. 结果表明, 随着放电电流的升高, 放电分为汤生放电、自脉冲放电和正常辉光放电三个阶段. 一个完整的自脉冲放电周期可以分为电流的上升期、下降期以及放电的等待期. 本文同时利用流体模型对自脉冲放电的时空动力学特性进行了模拟研究. 模拟结果表明, 当自脉冲放电电流处于最小值时, 放电被限制在阴极孔内, 电场强度、电子密度和电子产生速率均较低, 为汤生放电模式; 随着放电电流的增高, 孔内放电逐渐增强, 同时放电由孔内逐渐向孔外延伸. 当脉冲电流最高时, 阴极孔外具有较强的放电, 阴极外表面附近形成明显的阴极鞘层, 阴极腔外部存在较高的电子产生速率. 当放电电流降低时, 放电由孔外向孔内收缩, 并逐步恢复到汤生放电模式. 模拟结果同时表明, 不同自脉冲放电阶段电离源不同: 电流较高时直接电离起主要作用, 电流处于最低值时的脉冲等待期潘宁电离起主要作用. 实验和模拟结果表明, 微空心阴极自脉冲放电实质上是放电被限制在孔内的汤生放电模式与放电区域延伸到孔外的正常辉光放电模式相互转换的过程.
    To further explore the mechanism of self-pulsing discharge, a sandwiched microcavity cathode is used to study this phenomenon in argon. With the increases of discharge current, the discharge undergoes Townsend discharge, self-pulsing discharge and normal glow discharge. A complete self-pulsing discharge consists of the rising edge, the falling edge of the discharge current, and the waiting period of the discharge. The spatiotemporal dynamic characteristic of self-pulsing discharge is simulated by using a fluid model. The simulated results indicate that when the self-pulsing discharge current reaches its minimum value, the discharge is confined inside the cathode cavity. The electric field, electron density and electron generate rate are low, resulting in a Townsend discharge mode. As the discharge current increases, the discharge inside the cavity is strengthened, and the discharge gradually extends from the inside of the cavity to the outside. When the current reaches its maximum value, there exists a strong discharge outside the cavity, and an obvious cathode sheath is formed near the outer surface of the cathode, resulting in a high electron generate rate outside the cavity. When the discharge current decreases, the discharge shrinks from the outside to the inside of the cavity, and finally returns to the Townsend discharge mode. The simulated results also indicate that the ionization source varies depending on the stage of self-pulsing discharge, specifically, direct ionization is dominant when the current is high, and Penning ionization plays a major role in the pulse waiting period when the current reaches its minimum value. The experimental and simulation results indicate that the self-pulsing discharge in a micro-cavity cathode is essentially a process of mode transition between the Townsend discharge mode where the discharge is confined within the cavity and the normal glow discharge mode where the discharge region extends to the outside of the hole.
  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  伏安特性曲线图

    Fig. 2.  Voltage-current curve.

    图 3  不同放电模式下放电图像(红线小圆: 微孔; 红线大圆: 电极片)

    Fig. 3.  The discharge images at different discharge modes (small red circle: cavity, large red circle: cathode electrode).

    图 4  平均电流250 μA时的电压和电流脉冲波形图

    Fig. 4.  Voltage and current pulse waveforms at an average current of 250 μA.

    图 5  自脉冲频率随平均电流变化

    Fig. 5.  The self-pulsing frequency as a function of average discharge current.

    图 6  不同稳态放电模式下电子密度 (a)汤生放电模式I = 20 μA; (b)正常辉光放电模式I = 3000 μA

    Fig. 6.  Electron density at different stable discharge modes: (a) Townsend discharge at I = 20 μA; (b) normal glow discharge I = 3000 μA.

    图 7  稳态放电模式下z = –2.5 mm处一维径向电场

    Fig. 7.  One dimensional radial electric field at z = –2.5 mm in stable discharge mode.

    图 8  自脉冲放电电流模拟波形. tA = 58.9 μs, tB = 118.1 μs, tC = 131.3 μs, tD = 132.1 μs, tE = 146.3 μs

    Fig. 8.  The simulated discharge current waveform. tA = 58.9 μs, tB = 118.1 μs, tC = 131.3 μs, tD = 132.1 μs, tE = 146.3 μs.

    图 9  不同时刻电势分布图 (a) 58.9 μs; (b) 118.1 μs; (c) 131.3 μs; (d) 132.1 μs; (e) 146.3 μs

    Fig. 9.  Electric potential at different time: (a)58.9 μs; (b) 118.1 μs; (c) 131.3 μs; (d) 132.1 μs; (e) 146.3 μs.

    图 10  不同时刻电子密度分布图 (a) 58.9 μs; (b) 118.1 μs; (c) 131.3 μs; (d) 132.1 μs; (e) 146.3 μs

    Fig. 10.  Electron density distribution at different time: (a) 58.9 μs; (b) 118.1 μs; (c) 131.3 μs; (d) 132.1 μs; (e) 146.3 μs.

    图 11  不同时刻z = –2.5 mm处径向电场分布图

    Fig. 11.  Radial electric field distribution at z = –2.5 mm at different time.

    图 12  极间电压270 V时放电电流随时间变化图

    Fig. 12.  Discharge current evolution with time at a voltage of 270 V.

    图 13  不同时刻电子产生速率分布图 (a) 58.9 μs; (b) 118.1 μs; (c) 131.3 μs; (d) 132.1 μs; (e) 146.3 μs

    Fig. 13.  Electron generation rate at different times: (a) 58.9 μs; (b) 118.1 μs; (c) 131.3 μs; (d) 132.1 μs; (e) 146.3 μs.

    图 14  脉冲电流和不同电离速率时间演化图

    Fig. 14.  The evolution of pulse current and different ionization rates with time.

    表 1  碰撞反应类型

    Table 1.  Collision reactions in the model.

    反应类型反应方程反应类型反应方程
    直接电离Ar+e = Ar++2e [16]两体碰撞Ar*+Ar = Ar+Ar [18]
    分步电离Ar*+e = Ar++2e [16]三体碰撞Ar*+2 Ar = Ar2*+Ar [19]
    基态激发Ar+e = Ar*+e [16]解激发Ar*+e = Ar+e+hv [19]
    弹性碰撞Ar+e = Ar+e [16]复合反应Ar++e+e = Ar+e [20]
    潘宁电离Ar*+Ar* = Ar++Ar+e [17]
    下载: 导出CSV
    Baidu
  • [1]

    王震, 赵志航, 付洋洋 2024 73 125201

    Wang Z, Zhao Z H, Fu Y Y 2024 Acta Phys. Sin. 73 12501

    [2]

    Wei H C, Wang N, Duan Z C, He F 2018 Phys. Plasmas 25 123513Google Scholar

    [3]

    邝勇, 章程, 胡修翠, 任晨华, 陈根永, 邵涛 2023 电工技术学报 38 3960

    Kuang Y, Zhang C, Hu X C, Ren C H, Chen G Y, Shao T 2023 Trans. Chin. Electrotech. Soc. 38 3960

    [4]

    郭昱均, 季启政, 何锋, 廖劲松, 张宇, 欧阳吉庭 2019 高电压技术 45 820825

    Guo Y J, Ji Q Z, He F, Liao J S, Zhang Y, Ouyang J T 2019 High Voltage Eng. 45 820825

    [5]

    Saifutdinov A I, Sysoev S S 2023 Plasma Sources Sci. Technol. 32 114001Google Scholar

    [6]

    赵立芬, 哈静, 王非凡, 李庆, 何寿杰 2022 71 025201Google Scholar

    Zhao L F, Ha J, Wang F F, Li Q, He S J 2022 Acta Phys. Sin. 71 025201Google Scholar

    [7]

    Schoenbach K H, Kurt B 2016 Eur. Phys. J. D 70 29Google Scholar

    [8]

    欧阳吉庭, 张宇, 秦宇 2016 高电压技术 42 673684

    Ouyang J T, Zhang Y, Qin Y 2016 High Voltage Eng. 42 673684

    [9]

    Truscott B S, Turner C, May P W 1997 Plasma Sources Sci. Technol. 6 468477

    [10]

    Aubert X, Bauville G, Guillon J, Lacour B, Puech V, Rousseau A 2007 Plasma Sources Sci. Technol. 16 2332

    [11]

    Qin Y, He F, Jiang X X, Xie K, Ouyang J T 2014 Phys. Plasmas 21 073501Google Scholar

    [12]

    Qin Y, Xie K, Zhang Y, Ouyang J T 2016 Phys. Plasmas 23 023501Google Scholar

    [13]

    Hsu D D, Graves D B 2003 J. Phys. D: Appl. Phys. 36 28982907

    [14]

    Taylan O, Berberoglu H 2014 J. Appl. Phys. 116 043302Google Scholar

    [15]

    Lazzaroni C, Charbrert P 2011 Plasma Sources Sci. Technol. 20 20332038

    [16]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722733

    [17]

    Ferreira C M, Loureiro L, Richard A 1985 J. Appl. Phys. 57 82Google Scholar

    [18]

    Karoulina E V, Lebedev Y A 1992 J. Phys. D: Appl. Phys. 25 401Google Scholar

    [19]

    Biondi M A 1963 Phys. Rev. 129 1181Google Scholar

    [20]

    Shon Jong W, Kushner M J 1994 J. Appl. Phys. 75 1883Google Scholar

    [21]

    He S J, Wang P, Ha J, Zhang B M, Zhang Z, Li Q 2018 Plasma Sci. Technol. 20 054006Google Scholar

    [22]

    Fu Y Y, Verboncoeur J P, Christlieb A J 2017 Phys. Plasmas 24 103514Google Scholar

    [23]

    Cui R L, He F, Miao J S, Ouyang J T 2017 Phys. Plasmas 24 103524Google Scholar

    [24]

    Chen S, Li K L, Nijdam S 2019 Plasma Sources Sci. Technol. 28 055017Google Scholar

    [25]

    高嘉懋 2022 硕士学位论文 (武汉: 华中科技大学)

    Gao J M. 2022 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [26]

    Levko D, Raja L 2021 J. Phys. D: Appl. Phys. 54 235201Google Scholar

    [27]

    Arslanbekov R R, Kolobov V I 2003 J. Phys. D: Appl. Phys. 36 2986Google Scholar

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究.  , doi: 10.7498/aps.74.20241550
    [2] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究.  , doi: 10.7498/aps.73.20230712
    [3] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用.  , doi: 10.7498/aps.73.20240343
    [4] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究.  , doi: 10.7498/aps.71.20212194
    [5] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究.  , doi: 10.7498/aps.70.20212194
    [6] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究.  , doi: 10.7498/aps.71.20221555
    [7] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究.  , doi: 10.7498/aps.71.20221361
    [8] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟.  , doi: 10.7498/aps.71.20211150
    [9] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析.  , doi: 10.7498/aps.69.20200087
    [10] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究.  , doi: 10.7498/aps.68.20190734
    [11] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , doi: 10.7498/aps.67.20172192
    [12] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真.  , doi: 10.7498/aps.66.025203
    [13] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性.  , doi: 10.7498/aps.66.055101
    [14] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , doi: 10.7498/aps.62.124703
    [15] 张连珠, 孟秀兰, 张素, 高书侠, 赵国明. N2微空心阴极放电特性及其阴极溅射的PIC/MC模拟.  , doi: 10.7498/aps.62.075201
    [16] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究.  , doi: 10.7498/aps.61.245205
    [17] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究.  , doi: 10.7498/aps.61.045205
    [18] 夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强. 氩气微腔放电中特性参数的数值模拟研究.  , doi: 10.7498/aps.60.015201
    [19] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究.  , doi: 10.7498/aps.59.8747
    [20] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , doi: 10.7498/aps.53.3440
计量
  • 文章访问数:  364
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2024-12-20
  • 上网日期:  2025-01-08

/

返回文章
返回
Baidu
map