搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同缓冲气体中ArF准分子激光系统放电特性分析

王倩 赵江山 范元媛 郭馨 周翊

引用本文:
Citation:

不同缓冲气体中ArF准分子激光系统放电特性分析

王倩, 赵江山, 范元媛, 郭馨, 周翊

Analysis of ArF excimer laser system discharge characteristics in different buffer gases

Wang Qian, Zhao Jiang-Shan, Fan Yuan-Yuan, Guo Xin, Zhou Yi
PDF
HTML
导出引用
  • 为深入理解挖掘ArF准分子激光系统运转机制, 进而获得ArF准分子激光系统设计优化的理论及方向性指导, 文章基于流体模型, 以气体高压放电等离子体深紫外激光辐射过程为主要研究对象, 研究了放电抽运ArF准分子激光系统的动力学特性, 分析了不同缓冲气体中, ArF准分子激光系统极板间电压、电流、光子数密度变化趋势及电子数密度空间分布情况, 讨论了光电离在系统放电过程中的重要作用. 结果表明, Ne作为缓冲气体时, 电子耗尽层及阴极鞘层宽度更小, 放电更加稳定. 在Ne中添加杂质气体Xe, 可以通过光电离加速放电区域的扩展, 减小电子耗尽层及阴极鞘层的宽度, 降低放电发生的阈值电压, 提高放电稳定性.
    Excimer laser is the current mainstream source of international semiconductor lithography. The stable operation of the laser system directly affects the working efficiency of the semiconductor lithography machine, so it is very important to optimize the laser system. The buffer gas commonly used in ArF excimer laser systems is He, Ne. In the early years, Shinjin Nagai and Mieko Ohwa have studied the output characteristics of the system when using He or Ne as a buffer gas from the aspect of pump efficiency and gain coefficient, and pointed out that using Ne instead of He has no obvious advantages in terms of efficiency. However, when Ne is used as the buffer gas, the reaction between Ne and electrons is more complicated. In addition to direct ionization and excitation reactions, it also contains a large amount of step ionization and secondary ionization, which releases free electrons. The stability of the system is improved, when Ne is used as the buffer gas. The ArF excimer laser system discharge characteristics in different buffer gases are analyzed based on fluid model in the paper. The role of photoionization is discussed. The simulation results show that the width of the electron depletion layer and the cathode sheath are both smaller, and the discharge stability is higher when Ne is used as the buffer gas. The expansion of the discharge region is accelerated and the threshold voltage of the discharge is reduced by adding Xe into Ne to trigger photoionization. The excimer laser discharge process is very complicated and is affected by many factors. Only two factors of the buffer gas and the photoionization process are studied in this paper. The simulation model will be extended from one-dimensional case to two-dimensional case in the future, and multiple physical factors of the ArF excimer laser system will be considered.
      通信作者: 周翊, zhouyi@aoe.ac.cn
    • 基金项目: 国家科技重大专项(批准号: 2013ZX02202)和应用光学国家重点实验室开放基金(批准号: SKLAO-201915)资助的课题
      Corresponding author: Zhou Yi, zhouyi@aoe.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013ZX02202) and the Grant from the State Key Laboratory of Applied Optics, China (Grant No. SKLAO-201915)
    [1]

    Vladimir F, Slava R, Robert B, Hong Y, Kevin O, Robert J, Fedor T, Efrain F, Theodore C, Daniel B, William P 2008 Proc. SPIE 6924 69241RGoogle Scholar

    [2]

    Hirotaka M, Takahito K, Hiroaki T, Akihiko K, Takeshi O, Takashi M, Hakaru M 2016 Proc. SPIE 7980 79801I

    [3]

    Hirotaka M, Hiroshi F, Keisuke I, Hiroaki T, Akihiko K, Hiroshi T, Takeshi O, Satoru B, Takashi S, Hakaru M 2018 Proc. SPIE 10587 1058710

    [4]

    Mieko O, Minoru O 1986 J. Appl. Phys. 59 32Google Scholar

    [5]

    Shinji N, Hideo F, Yoshiyuki U, Jun Y, Akihiro K, Toshio G 1995 J. Appl. Phys. 77 2906Google Scholar

    [6]

    Mieko O, Minoru O 1988 J. Appl. Phys. 63 1306Google Scholar

    [7]

    Jiang C, Wang Y Q 2006 Plasma Sci. Technol. 8 185Google Scholar

    [8]

    石锋 2008 硕士学位论文(大连: 大连理工大学)

    Shi F 2008 M. S. Dissertation (Da Lian: Dalian University of Technology) (in Chinese)

    [9]

    Yang C G, Duan L, Xu Y Y, Wang X B, Zuo D L 2012 Phys. Plasma. 19 093510Google Scholar

    [10]

    罗时文, 左都罗, 王新兵 2015 强激光与粒子束 27 081006Google Scholar

    Luo S W, Zuo D L, Wang X B 2015 High Power Laser and Particle Beams 27 081006Google Scholar

    [11]

    王倩, 赵江山, 罗时文, 左都罗, 周翊 2016 65 214205Google Scholar

    Wang Q, Zhao J S, Luo S W, Zuo D L, Zhou Y 2016 Acta Phys. Sin. 65 214205Google Scholar

    [12]

    Thomos H J, Louis J P, Allen M H 1979 IEEE J. Quantum Electron. 15 289Google Scholar

    [13]

    Kulikovsky A A 1994 J. Phys. D: Appl. Phys. 27 2556Google Scholar

    [14]

    Akashi H, Sakai Y, Tagashira H 1994 J. Phys D: Appl Phys. 27 1097Google Scholar

    [15]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D: Appl. Phys. 28 445Google Scholar

    [16]

    Rauf S, Kushner M J 1999 J. Appl. Phys. 85 3460Google Scholar

    [17]

    Razhev A M, Shchedrin A M, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799Google Scholar

    [18]

    Xiong Z, Kushner M J 2011 J. Appl. Phys. 110 083304Google Scholar

    [19]

    Levatter J I, Lin S C 1980 J. Appl. Phys. 51 210Google Scholar

  • 图 1  准分子动力学仿真计算流程

    Fig. 1.  Simulation process of discharge dynamics of excimer.

    图 2  放电电路

    Fig. 2.  Discharge circuit.

    图 3  极板间电压、电流及光子数密度随时间变化图(He为缓冲气体)

    Fig. 3.  Waveforms of discharge voltage, current, and photon number density (He is the buffer gas).

    图 4  极板间电压、电流及光子数密度随时间变化图(Ne为缓冲气体)

    Fig. 4.  Waveforms of discharge voltage, current, and photon number density (Ne is the buffer gas).

    图 5  电子数密度空间分布 (a) He作为缓冲气体; (b) Ne作为缓冲气体

    Fig. 5.  Electron number density spatial distribution: (a) He as the buffer gas; (b) Ne as the buffer gas.

    图 6  Ne+, Ne*, He+, He*数密度变化图

    Fig. 6.  Waveforms of Ne+, Ne*, He+, He* number density.

    图 7  距离阴极0.2 cm处, 电子数密度随时间分布 (a) 不考虑光电离; (b)考虑光电离

    Fig. 7.  Waveforms of electron number density at 0.2 cm from cathode: (a) Considering photoionization; (b) without photoionization.

    图 8  添加Xe与不添加Xe极板间电流、电压及光子数密度变化图

    Fig. 8.  Waveforms of discharge voltage, current, and photon number density with and without Xe.

    图 9  添加Xe后电子数密度空间分布

    Fig. 9.  Waveforms of electron number density spatial distribution with Xe.

    图 10  不同Xe含量光子数密度分布情况

    Fig. 10.  Waveforms of photon number density with different Xe ratios.

    表 1  ArF准分子激光器等离子反应过程(He作为缓冲气体)

    Table 1.  Plasma reaction process of ArF excimer laser system (He is the buffer gas).

    反应类型反应过程反应系数参考文献
    电子碰撞反应Ar + e → Ar+ + 2e计算玻尔兹曼方程得到
    Ar + e → Arex + e计算玻尔兹曼方程得到
    Ar + e → Ar* + e计算玻尔兹曼方程得到
    Ar* + e → Ar+ + 2e计算玻尔兹曼方程得到
    F2 + e → F + F计算玻尔兹曼方程得到
    He + e → He+ + 2e计算玻尔兹曼方程得到
    He + e → Heex + e计算玻尔兹曼方程得到
    He + e → He* + e计算玻尔兹曼方程得到
    中性粒子反应Ar+ + 2 Ar → Ar2+ + Ar2.5 × 10–31 cm6·s–1[15]
    Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
    Ar2+ + F→ ArF* + Ar1 × 10–6 cm3·s–1[15]
    Arex → Ar + 1.0 ns[15]
    Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
    ArF*→Ar + F + 42 ns[15]
    受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
    光电离 + F → F + e1 × 10–17 cm3[15]
    Arex + → Ar+ + e1 × 10–18 cm3[15]
    下载: 导出CSV

    表 2  ArF准分子激光器等离子反应过程(Ne作为缓冲气体)

    Table 2.  Plasma reaction process of ArF excimer laser system (Ne is buffer gas).

    反应类型反应过程反应系数参考文献
    电子碰撞反应Ar + e → Ar+ + 2e计算玻尔兹曼方程得到
    Ar + e → Arex + e计算玻尔兹曼方程得到
    Ar + e → Ar* + e计算玻尔兹曼方程得到
    Ar* + e → Ar+ + 2e计算玻尔兹曼方程得到
    F2 + e → F + F计算玻尔兹曼方程得到
    Ne* + e → Ne+ + 2e计算玻尔兹曼方程得到
    Ne + e → Ne+ + 2e计算玻尔兹曼方程得到
    Ne + e → Ne* + e计算玻尔兹曼方程得到
    中性粒子反应Ne2* + e → 2e + Ne2+(9.75 × 10–9) × (abs(Te))0.71 × exp(–3.4/abs(Te))[16]
    Ne2+ + e → Ne* + Ne(3.7 × 10–8) × (abs(Te))–0.43[16]
    Ar+ + 2Ar → Ar2+ + Ar2.5 × 10–31 cm6·s–1[15]
    Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
    Ar2+ + F → ArF* + Ar1 × 10–6 cm3·s–1[15]
    Arex → Ar + 1.0 ns[15]
    Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
    2Ne* → Ne+ + Ne + e5 × 10–10 cm3·s–1[17]
    Ne+ + 2Ne →Ne2+ + Ne4.4 × 10–32 cm6·s–1[17]
    Ne* + Ne + Ne → Ne2* + Ne4 × 10–34 cm6·s–1[17]
    Ar + ArF* → 2Ar + F9 e × 10-12 cm3·s–1[15]
    Ne + ArF* → Ar + Ne + F1 × 10–12 cm3·s–1[17]
    F2 + ArF* → Ar + 3F1.9 × 10–9 cm3·s–1[15]
    受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
    光电离 + F → F + e1 × 10–17 cm3[15]
    Arex + → Ar+ + e1 × 10–18 cm3[15]
    Xe + ’→Xe+ + e阈值为 12.1 eV, 截面为1 × 10–16 cm2[18]
    下载: 导出CSV
    Baidu
  • [1]

    Vladimir F, Slava R, Robert B, Hong Y, Kevin O, Robert J, Fedor T, Efrain F, Theodore C, Daniel B, William P 2008 Proc. SPIE 6924 69241RGoogle Scholar

    [2]

    Hirotaka M, Takahito K, Hiroaki T, Akihiko K, Takeshi O, Takashi M, Hakaru M 2016 Proc. SPIE 7980 79801I

    [3]

    Hirotaka M, Hiroshi F, Keisuke I, Hiroaki T, Akihiko K, Hiroshi T, Takeshi O, Satoru B, Takashi S, Hakaru M 2018 Proc. SPIE 10587 1058710

    [4]

    Mieko O, Minoru O 1986 J. Appl. Phys. 59 32Google Scholar

    [5]

    Shinji N, Hideo F, Yoshiyuki U, Jun Y, Akihiro K, Toshio G 1995 J. Appl. Phys. 77 2906Google Scholar

    [6]

    Mieko O, Minoru O 1988 J. Appl. Phys. 63 1306Google Scholar

    [7]

    Jiang C, Wang Y Q 2006 Plasma Sci. Technol. 8 185Google Scholar

    [8]

    石锋 2008 硕士学位论文(大连: 大连理工大学)

    Shi F 2008 M. S. Dissertation (Da Lian: Dalian University of Technology) (in Chinese)

    [9]

    Yang C G, Duan L, Xu Y Y, Wang X B, Zuo D L 2012 Phys. Plasma. 19 093510Google Scholar

    [10]

    罗时文, 左都罗, 王新兵 2015 强激光与粒子束 27 081006Google Scholar

    Luo S W, Zuo D L, Wang X B 2015 High Power Laser and Particle Beams 27 081006Google Scholar

    [11]

    王倩, 赵江山, 罗时文, 左都罗, 周翊 2016 65 214205Google Scholar

    Wang Q, Zhao J S, Luo S W, Zuo D L, Zhou Y 2016 Acta Phys. Sin. 65 214205Google Scholar

    [12]

    Thomos H J, Louis J P, Allen M H 1979 IEEE J. Quantum Electron. 15 289Google Scholar

    [13]

    Kulikovsky A A 1994 J. Phys. D: Appl. Phys. 27 2556Google Scholar

    [14]

    Akashi H, Sakai Y, Tagashira H 1994 J. Phys D: Appl Phys. 27 1097Google Scholar

    [15]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D: Appl. Phys. 28 445Google Scholar

    [16]

    Rauf S, Kushner M J 1999 J. Appl. Phys. 85 3460Google Scholar

    [17]

    Razhev A M, Shchedrin A M, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799Google Scholar

    [18]

    Xiong Z, Kushner M J 2011 J. Appl. Phys. 110 083304Google Scholar

    [19]

    Levatter J I, Lin S C 1980 J. Appl. Phys. 51 210Google Scholar

  • [1] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响.  , 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [2] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [3] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真.  , 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [4] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析.  , 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [5] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法.  , 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [6] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究.  , 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [7] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [8] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究.  , 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [9] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量.  , 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [10] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性.  , 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [11] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离.  , 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [12] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量.  , 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [13] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [14] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究.  , 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [15] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 陈 民, 盛政明, 张 杰. 激光脉冲在气体中产生的离化波前的演化及其对光脉冲传播的影响.  , 2006, 55(1): 337-343. doi: 10.7498/aps.55.337
    [19] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数.  , 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [20] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
计量
  • 文章访问数:  6938
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-04-13
  • 上网日期:  2020-08-27
  • 刊出日期:  2020-09-05

/

返回文章
返回
Baidu
map