-
为了研究氩气(Ar)中介质阻挡大气压辉光放电(APGD)的放电机理, 通过建立一个一维的多粒子自洽耦合流体模型, 采用有限元方法进行数值计算, 得到了气体间隙压降、介质表面电荷密度、放电电流密度随时间的周期变化波形, 以及电子、离子、亚稳态粒子密度和空间电场强度的时空分布. 仿真计算结果表明:介质表面积聚的电荷对于放电的过程的起始及熄灭具有重要作用;当增大外施电压时, 放电击穿时刻提前, 放电电流密度和介质表面电荷密度峰值增大, 表明放电过程更加剧烈;随着阻挡介质相对介电常数的增大, 放电电流密度也随之增大. 各粒子密度及电场的时空分布表明放电过程在外施电压半个周期中只有一次放电, 且存在明显的阴极位降区、负辉区、等离子体正柱区等辉光放电的典型区域, 为大气压辉光放电(APGD).
-
关键词:
- 介质阻挡放电(DBD) /
- 大气压辉光放电(APGD) /
- 低温等离子体 /
- 流体模型
In order to investigate the mechanism of dielectric barrier atmospheric pressure glow discharge(APGD) in Ar, an one-dimensional multiple particle self-consistent coupled fluid model is proposed. And the finite-element method (FEM) is used in the numerical calculation model, so the periodic evolvement waveforms of gas voltage, barrier surface charge density and discharge current density are investigated. The spatio temporal distributions of electrons, ions, metastable particles density and space electrical field are also obtained. The simulation results show that the charges accumulated on the barrier dielectric surface play an important role in ignition and extinguishment of the discharge. With the increase of applied voltage amplitude, the DBD breakdown occurs ahead of time, and discharge current density and the surface charge density increase gradually, which indicate that the discharge process becomes fierce. Furthermore, with the increase of relative permittivity of dielectric material, the discharge current density also gradually increases. The spatio temporal distributions of the particles density and the space electrical field show that the DBD breakdown occurs every half the AC period and the discharge under conditions considered in this model is a typical atmospheric pressure glow discharge(APGD), having an obvious cathode fall region, a negative glow region, and a positive column region.-
Keywords:
- dielectric barrier discharge (DBD) /
- atmospheric pressure glow discharge (APGD) /
- low temperature plasma /
- fluid model
[1] Luo H Y,Wang X X,Mao T, Liang Z, Lv B, Guan Z C,Wang L M 2008 Acta Phys. Sin. 57 4298 (in Chinese) [罗海云, 王新新, 毛婷, 梁卓, 吕博, 关志成, 王黎明 2008 57 4298]
[2] Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 57 1001 (in Chinese) [李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳 2008 57 1001]
[3] Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 51 2778]
[4] Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988 J. Phys D 21 838
[5] Okazaki S, Kogoma M, Uehara M 1993 J. Phys. D 26 889
[6] Massines F, Gouda G 1998 J. Phys. D 31 3411
[7] Tsai P P,Wadsworth L C, Roth J R 1997 Textile Res. J. 67 359
[8] Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys. Sin. 59 2610 (in Chinese) [郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾 2010 59 2610]
[9] Golubovskii Y B, Maiorov V A, Behnke J 2003 J. Phys. D 36 39
[10] Zhang P, Kortshagen U 2006 J. Phys. D 39 153
[11] Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. App. Phys. 83 2950
[12] Choi Y H, Kim J H, Hwang Y S 2006 Thin Solid Films 506/507 389
[13] Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 (in Chinese) [王艳辉, 王德真 2003 52 1694]
[14] Lü B, Wang X X, Luo H Y, Liang Z 2008 Advanced Technology of Electrical Engineering and Energy 27 63 (in Chinese) [吕博, 王新新, 罗海云, 梁卓 2008 电工电能新技术 27 63]
[15] Shi H, Wang Y H, Wang D Z 2008 Physics of Plasma 15 122306
[16] Wang Y H, Shi H, Sun J Z, Wang D Z 2009 Physics of Plasma 16 063507
[17] Shao X J, Ma Y, Li Y X, Zhang Z H, Zhang G H 2010 High Voltage Engineering 36 2047 (in Chinese) [邵先军, 马跃, 李娅西, 张增辉, 张冠军 2010 高电压技术 36 2047]
[18] Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci 36 2782
[19] Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. 16 1089
[20] Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 145
[21] Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas.Tech. 131 153
[22] Hagelaar G J M, Pitchford L C 2005 Plasma Source Sci. Tech. 15 722
[23] Moravej M, Yang X, Barankin M 2006 Plasma Sources Sci. Technol 15 204
[24] Byoung-kuk Min, Seok-Hyun Lee, Hun-Gun Park 2000 J. Vac. Sci. Technol. A 18 349
[25] Dyatko N A, Ionikh Y Z, Kochetov I V 2008 J. Phys. D 41 055204
[26] Rafatov I R, Akbar D, Bilikmen S 2007 Physics Letters A 367 114
[27] Grubert G K, Loffhagen D, Uhrlandt D 2005 Femlab Conference 2005
[28] Morrow R, Sato N 1999 J. Phys. D 32 L20
[29] Codina R 1998 Comput. Metholds Appl. Mech. Eng. 156 185
-
[1] Luo H Y,Wang X X,Mao T, Liang Z, Lv B, Guan Z C,Wang L M 2008 Acta Phys. Sin. 57 4298 (in Chinese) [罗海云, 王新新, 毛婷, 梁卓, 吕博, 关志成, 王黎明 2008 57 4298]
[2] Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 57 1001 (in Chinese) [李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳 2008 57 1001]
[3] Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 51 2778]
[4] Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988 J. Phys D 21 838
[5] Okazaki S, Kogoma M, Uehara M 1993 J. Phys. D 26 889
[6] Massines F, Gouda G 1998 J. Phys. D 31 3411
[7] Tsai P P,Wadsworth L C, Roth J R 1997 Textile Res. J. 67 359
[8] Hao Y P, Yang L, Tu E L, Chen J Y, Zhu Z W, Wang X L 2010 Acta Phys. Sin. 59 2610 (in Chinese) [郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾 2010 59 2610]
[9] Golubovskii Y B, Maiorov V A, Behnke J 2003 J. Phys. D 36 39
[10] Zhang P, Kortshagen U 2006 J. Phys. D 39 153
[11] Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. App. Phys. 83 2950
[12] Choi Y H, Kim J H, Hwang Y S 2006 Thin Solid Films 506/507 389
[13] Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 (in Chinese) [王艳辉, 王德真 2003 52 1694]
[14] Lü B, Wang X X, Luo H Y, Liang Z 2008 Advanced Technology of Electrical Engineering and Energy 27 63 (in Chinese) [吕博, 王新新, 罗海云, 梁卓 2008 电工电能新技术 27 63]
[15] Shi H, Wang Y H, Wang D Z 2008 Physics of Plasma 15 122306
[16] Wang Y H, Shi H, Sun J Z, Wang D Z 2009 Physics of Plasma 16 063507
[17] Shao X J, Ma Y, Li Y X, Zhang Z H, Zhang G H 2010 High Voltage Engineering 36 2047 (in Chinese) [邵先军, 马跃, 李娅西, 张增辉, 张冠军 2010 高电压技术 36 2047]
[18] Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci 36 2782
[19] Zhang H Y, Wang D Z, Wang X G 2007 Chin. Phys. 16 1089
[20] Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 145
[21] Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas.Tech. 131 153
[22] Hagelaar G J M, Pitchford L C 2005 Plasma Source Sci. Tech. 15 722
[23] Moravej M, Yang X, Barankin M 2006 Plasma Sources Sci. Technol 15 204
[24] Byoung-kuk Min, Seok-Hyun Lee, Hun-Gun Park 2000 J. Vac. Sci. Technol. A 18 349
[25] Dyatko N A, Ionikh Y Z, Kochetov I V 2008 J. Phys. D 41 055204
[26] Rafatov I R, Akbar D, Bilikmen S 2007 Physics Letters A 367 114
[27] Grubert G K, Loffhagen D, Uhrlandt D 2005 Femlab Conference 2005
[28] Morrow R, Sato N 1999 J. Phys. D 32 L20
[29] Codina R 1998 Comput. Metholds Appl. Mech. Eng. 156 185
计量
- 文章访问数: 8802
- PDF下载量: 874
- 被引次数: 0