[1] |
Wei Chao, Yu Xuan, Lei Cheng, Wang Zi-Yu, Liu Sheng, Wang Du. Vibrational thermal pool multi-level theoretical model and design simulation of HBr-filled hollow-core fiber gas laser. Acta Physica Sinica,
2024, 73(15): 154201.
doi: 10.7498/aps.73.20240428
|
[2] |
Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica,
2022, 71(2): 025201.
doi: 10.7498/aps.71.20211150
|
[3] |
Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen. Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode. Acta Physica Sinica,
2021, 70(4): 045202.
doi: 10.7498/aps.70.20201540
|
[4] |
. Simulation on hollow cathode discharge in oxygen. Acta Physica Sinica,
2021, (): .
doi: 10.7498/aps.70.20211150
|
[5] |
He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica,
2019, 68(21): 215101.
doi: 10.7498/aps.68.20190734
|
[6] |
Wang Tian-Long, Qiu Qing-Quan, Jing Li-Wei, Zhang Xiao-Bo. Design of circular composite sputtering cathode and simulation of its discharge characteristics. Acta Physica Sinica,
2018, 67(7): 070703.
doi: 10.7498/aps.67.20172576
|
[7] |
He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica,
2017, 66(5): 055101.
doi: 10.7498/aps.66.055101
|
[8] |
Zhang Lian-Zhu, Meng Xiu-Lan, Zhang Su, Gao Shu-Xia, Zhao Guo-Ming. Simulation of N2 microhollow cathode discharge and cathode sputtering by using a PIC/MC model. Acta Physica Sinica,
2013, 62(7): 075201.
doi: 10.7498/aps.62.075201
|
[9] |
He Shou-Jie, Ha Jing, Liu Zhi-Qiang, Ouyang Ji-Ting, He Feng. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms. Acta Physica Sinica,
2013, 62(11): 115203.
doi: 10.7498/aps.62.115203
|
[10] |
Zhang Xin-Meng, Tian Xiu-Bo, Gong Chun-Zhi, Yang Shi-Qin. Discharge characteristics of confined cathode micro-arc oxidation. Acta Physica Sinica,
2010, 59(8): 5613-5619.
doi: 10.7498/aps.59.5613
|
[11] |
Zheng Fei-Teng, Yang Zhong-Hai, Jin Xiao-Lin. The initiation phase of pseudospark discharge in a hollow cathode via PIC/MCC simulation. Acta Physica Sinica,
2008, 57(2): 990-995.
doi: 10.7498/aps.57.990
|
[12] |
Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica,
2004, 53(10): 3440-3446.
doi: 10.7498/aps.53.3440
|
[13] |
Zhang Yong-Hui, Jiang Jin-Sheng, Chang An-Bi. Study of the hollow cathode plasma electron-gun. Acta Physica Sinica,
2003, 52(7): 1676-1681.
doi: 10.7498/aps.52.1676
|
[14] |
Yao Xi-Lin, Wang Xin-Bing, Lai Jian-Jun. Monte Carlo simulation of the electron motion in an Ar microhollow cathode disch arge. Acta Physica Sinica,
2003, 52(6): 1450-1454.
doi: 10.7498/aps.52.1450
|
[15] |
Yu Jian-Hua, Lai Jian-Jun, Huang Jian-Jun, Wang Xin-Bin, Qui Jun-Lin. . Acta Physica Sinica,
2002, 51(9): 2080-2085.
doi: 10.7498/aps.51.2080
|
[16] |
He Yu, Guo Wen-Kang, Shao Qi-Jun, Xu Peng. . Acta Physica Sinica,
2000, 49(3): 487-491.
doi: 10.7498/aps.49.487
|
[17] |
CHEN YONG-ZHOU, CHEN QING-MING, LI JUN, LAI JIAN-JUN, QIU JUN-LIN. COMPUTER SIMULATION OF THE ELECTRON MOTION IN A HELIUM HOLLOW-CATHODE DISCHARGE CONFINED BY A MAGNETIC FIELD. Acta Physica Sinica,
1998, 47(10): 1665-1672.
doi: 10.7498/aps.47.1665
|
[18] |
HAN JUN-BO, WANG DE-ZHEN, MA TENG-CAI. A SELF-CONSISTENT MONTE CARLO SIMULATION OF IONS IN HOLLOW-CATHODE SHEATH OF ARGON GAS DISCHARGES. Acta Physica Sinica,
1996, 45(3): 428-435.
doi: 10.7498/aps.45.428
|
[19] |
CHEN CHENG, SUN WEI. A SELF-CONSISTENT KINETICS MODEL OF CuBr LASER WITH HYDROGEN ADDITIVES. Acta Physica Sinica,
1995, 44(11): 1734-1746.
doi: 10.7498/aps.44.1734
|
[20] |
WEI HE-LIN, LIU ZU-LI. ELECTRON TRANSPORT PROCESS IN CATHODE SHEATH OF HELIUM dc HOLLOW CATHODE GLOW DISCHARGE PLASMA. Acta Physica Sinica,
1994, 43(6): 950-957.
doi: 10.7498/aps.43.950
|