-
Micro hollow cathode sustained discharge (MCSD) is simulated by using a fluid model, and the spatiotemoral characteristics of the electric potential, electron density, ion density and electric field are investigated. Results show that the MCSD acts in different modes at different times. The first stage is the Townsend discharge mode. The second is a transition mode from Townsend discharge mode to a hollow cathode effect mode, and the electron density, ion density and electric field near the cathode rise drastically, in which the MCSD is ignited initially. The third stage is the hollow cathode effect mode, and the MCSD forms generally. The last stage is stable discharge state. At the stable discharge stage, the electron density and the ion density each achieve 1015 cm-3 with a peak density located in the center of hollow cathode chamber. The value of electron density in the MCSD region is on the order of 1013 cm -3. The results also show that the micro-hollow cathode discharge (MHCD) contributes to the formation of MCSD, and the MCSD also facilitates the development of MHCD. In addition, the voltage on the second anode has important influence on the distributions of electric potential, electron density and electric field both inside the hollow cathode and outside the hollow cathode. Moreover, the influence on the MCSD is more apparent than the influence on the MHCD. With the increase of voltage on the second anode, the cathode sheath close to the first anode becomes more and more apparent. The second anode is necessary for the formation of micro-hollow cathode sustained discharge.
-
Keywords:
- micro hollow cathode sustained discharge /
- fluid model /
- electric potential /
- electron density
[1] Schoenbach K H, Moselhy M, Shi W, Bentley R 1996Appl.Phys.Lett. 68 13
[2] Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011Acta Phys.Sin. 60 015201(in Chinese)[夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强2011 60 015201]
[3] Zhan L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013Acta Phys.Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明2013 62 075201]
[4] Becker K H, Schoenbach K H, Eden J G 2006J.Phys.D 39 R55
[5] Schoenbach K H, Becker K 2016Eur.Phys.J.D 70 1
[6] Ouyang J T, Zhang Y, Qin Y 2016High Voltage Engineering 42 673(in Chinese)[欧阳吉庭, 张宇, 秦宇2016高电压技术42 673]
[7] Xia G Q, Mao G W, Chen M L, Sun A B 2010High Pow.Las.Part.Beam. 22 1145(in Chinese)[夏广庆, 毛根旺, 陈茂林, 孙安邦2010强激光与粒子束22 1145]
[8] Stark R H, Schoenbach K H 1999J.Appl.Phys. 85 2075
[9] Xia G Q, Nader S 2011Spectrosc.Spect.Anal. 31 21(in Chinese)[夏广庆, Nader S 2011光谱学与光谱分析31 21]
[10] Wang Y D, Ouyang J T 2009Transactions of Beijing Institute of Technology 29 1014(in Chinese)[王跃东, 欧阳吉庭2009北京理工大学学报29 1014]
[11] Mohamed A A H, Block R, Schoenbach K H 2001IEEE Trans.Plasma.Sci. 30 182
[12] Park H I, Lee T I, Park K W, Baik H K, Lee S J, Song K M 2003Appl.Phys.Lett. 82 3191
[13] Callegari T, Aubert X, Rousseau A, Boeuf J P, Pitchford L C 2010Eur.Phys.J.D 60 581
[14] Shin J, Rahman M T 2011Appl.Phys.Express 4 096001
[15] Sharmin, Sultana, Jichul, Shin 2014Chin.Phys.Lett. 31 095203
[16] Yao X L, Wang X B, Zou L N, Lu H 2003Laser Journal 24 21(in Chinese)[姚细林, 王新兵, 周俐娜, 卢宏2003激光杂志24 21]
[17] Makasheva K, Muoz Serrano E, Hagelaar G, Pitchford L C 2007Plasma Phys.Controlled Fusion 49 B233
[18] Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014Acta Phys.Sin. 63 095206(in Chinese)[付洋洋, 罗海云, 邹晓兵, 王强, 王新新2014 63 095206]
[19] Fu Y Y, Luo H Y, Zou X B, Wang X X 2014Chin.Phys.Lett.31 075201
[20] He S, Jing H, Liu S, Ouyang J T 2013Phys.Plasmas 20 123504
[21] Bogaerts A, Gijbels R 1995J.Appl.Phys. 78 6427
[22] Hagelaar G J, de Hoog F J, Kroesen G M 2000Phys.Rev.E 62 1452
[23] Ouyang J, He F, Miao J, Wang J 2007J.Appl.Phys. 101 043303
[24] Rubin B, Williams J D 2008J.Appl.Phys. 104 053302
[25] Choi P, Chuaqui H, Favre M, Colas V 1995IEEE Trans.Plasma Sci. 23 221
-
[1] Schoenbach K H, Moselhy M, Shi W, Bentley R 1996Appl.Phys.Lett. 68 13
[2] Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011Acta Phys.Sin. 60 015201(in Chinese)[夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强2011 60 015201]
[3] Zhan L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013Acta Phys.Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明2013 62 075201]
[4] Becker K H, Schoenbach K H, Eden J G 2006J.Phys.D 39 R55
[5] Schoenbach K H, Becker K 2016Eur.Phys.J.D 70 1
[6] Ouyang J T, Zhang Y, Qin Y 2016High Voltage Engineering 42 673(in Chinese)[欧阳吉庭, 张宇, 秦宇2016高电压技术42 673]
[7] Xia G Q, Mao G W, Chen M L, Sun A B 2010High Pow.Las.Part.Beam. 22 1145(in Chinese)[夏广庆, 毛根旺, 陈茂林, 孙安邦2010强激光与粒子束22 1145]
[8] Stark R H, Schoenbach K H 1999J.Appl.Phys. 85 2075
[9] Xia G Q, Nader S 2011Spectrosc.Spect.Anal. 31 21(in Chinese)[夏广庆, Nader S 2011光谱学与光谱分析31 21]
[10] Wang Y D, Ouyang J T 2009Transactions of Beijing Institute of Technology 29 1014(in Chinese)[王跃东, 欧阳吉庭2009北京理工大学学报29 1014]
[11] Mohamed A A H, Block R, Schoenbach K H 2001IEEE Trans.Plasma.Sci. 30 182
[12] Park H I, Lee T I, Park K W, Baik H K, Lee S J, Song K M 2003Appl.Phys.Lett. 82 3191
[13] Callegari T, Aubert X, Rousseau A, Boeuf J P, Pitchford L C 2010Eur.Phys.J.D 60 581
[14] Shin J, Rahman M T 2011Appl.Phys.Express 4 096001
[15] Sharmin, Sultana, Jichul, Shin 2014Chin.Phys.Lett. 31 095203
[16] Yao X L, Wang X B, Zou L N, Lu H 2003Laser Journal 24 21(in Chinese)[姚细林, 王新兵, 周俐娜, 卢宏2003激光杂志24 21]
[17] Makasheva K, Muoz Serrano E, Hagelaar G, Pitchford L C 2007Plasma Phys.Controlled Fusion 49 B233
[18] Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014Acta Phys.Sin. 63 095206(in Chinese)[付洋洋, 罗海云, 邹晓兵, 王强, 王新新2014 63 095206]
[19] Fu Y Y, Luo H Y, Zou X B, Wang X X 2014Chin.Phys.Lett.31 075201
[20] He S, Jing H, Liu S, Ouyang J T 2013Phys.Plasmas 20 123504
[21] Bogaerts A, Gijbels R 1995J.Appl.Phys. 78 6427
[22] Hagelaar G J, de Hoog F J, Kroesen G M 2000Phys.Rev.E 62 1452
[23] Ouyang J, He F, Miao J, Wang J 2007J.Appl.Phys. 101 043303
[24] Rubin B, Williams J D 2008J.Appl.Phys. 104 053302
[25] Choi P, Chuaqui H, Favre M, Colas V 1995IEEE Trans.Plasma Sci. 23 221
Catalog
Metrics
- Abstract views: 6664
- PDF Downloads: 197
- Cited By: 0