-
A broadband and high-efficieny bi-layer metasurface is proposed in this paper. The unit cell of the metasurface is formed by symmetrically etching two cross-type metal patches on both sides of a dielectric plate. Furthermore, the two metal patches have a displacement of half a period along the y-axis. By employing the displacement, the transmission bandwidth of the bi-layer metasurface is significantly expanded. In order to obtain a physical insight into bandwidth broadening, a π-type equivalent circuit that presents the electromagnetic coupling between within the bi-layer metasurfaces is successfully extracted to investigate the influence of electromagnetic coupling on transmission performance. The results show that by shifting the metal patches along the y-axis by half a period, the coupling impedance (Z12 or Z21) of bi-layer metasurface can be significantly modified, which further changes the electromagnetic coupling of the bi-layer metasurface. Correspondingly, the impedances Zp and Zs in the π-type circuit are changed to approximately meet the resonant condition of circuit in broadband, resulting in the bandwidth expansion of the proposed device. By using Pancharatnam-Berry phase theory, we redesign the proposed metasurface unit cell into a broadband orbital angular momentum generator. The simulation and measurement results verify that the bi-layer metasurface can convert a left-hand circularly polarized wave into a right-hand circularly polarized wave carrying orbital angular momentum in a frequency range between 11 GHz and 12.8 GHz, demonstrating the performance of device.
[1] Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar
[3] Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar
[4] Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar
[5] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[6] Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar
[7] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[8] Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar
[9] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar
[10] Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar
[11] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[12] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar
[13] Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar
[14] Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar
[15] West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar
[16] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar
[17] Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar
[18] Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar
[19] Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar
[20] Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar
[21] Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar
[22] Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar
[23] Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar
[24] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar
-
图 2 超表面对线极化波的响应(txx和tyy为x极化波和y极化波的同极化传输系数的振幅, φxx 和φyy为同极化传输系数的相位)
Figure 2. Amplitude and phase of co-polarized transmission coefficient, where txx and tyy are amplitudes of co-polarized transmission coefficients for x- and y-polarized incident waves, and φxx and φyy correspond to the phase of txx and tyy.
表 1 与其他传输型超表面的性能对比(
${\lambda _0}$ 为中心频率对应的波长)Table 1. Comparison with other transmissive metasurface.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar
[3] Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar
[4] Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar
[5] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[6] Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar
[7] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[8] Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar
[9] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar
[10] Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar
[11] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[12] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar
[13] Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar
[14] Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar
[15] West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar
[16] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar
[17] Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar
[18] Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar
[19] Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar
[20] Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar
[21] Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar
[22] Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar
[23] Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar
[24] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar
Catalog
Metrics
- Abstract views: 6613
- PDF Downloads: 193
- Cited By: 0