搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料复合结构的太赫兹液晶移相器

陈闻博 陈鹤鸣

引用本文:
Citation:

基于超材料复合结构的太赫兹液晶移相器

陈闻博, 陈鹤鸣

Terahertz liquid crystal phase shifter based on metamaterial composite structure

Chen Wen-Bo, Chen He-Ming
cstr: 32037.14.aps.71.20212400
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了解决现存太赫兹移相器的损耗较大且不可控、相移量较小的问题, 本文设计了一种简易超材料复合结构实现的太赫兹移相器. 该器件由4层结构组成, 自上而下依次为L型金属谐振层、液晶层、弓型金属层、石英基底层. 通过在上、下金属层施加偏置电压, 改变液晶盒内液晶分子指向矢的偏转角α, 从而改变液晶的有效折射率, 器件的相位也随之发生变化, 进而实现动态调控相位的目的. 仿真结果表明: 设计的太赫兹液晶移相器在1.68—1.78 THz间透射率可达0.968, 插入损耗低至0.3 dB; 当频率为1.7396 THz时, 其最大相移为352.625°, 在1.73151.7396 THz (带宽为8.1 GHz) 频率内相移量超过352°. 这种简易超材料多层结构为调控太赫兹波提供了一种新方法, 在太赫兹成像、传感等领域有广泛的应用前景.
    In order to solve the problems of large, uncontrollable insertion loss and small phase shift of the existing terahertz phase shifters, in this work a kind of terahertz phase shifter realized by a simple metamaterial composite structure is designed. The device is composed of four layers in structure, they from top to bottom, being an L-shaped metal resonance layer, a liquid crystal layer, a bow-shaped metal layer, and a quartz substrate layer. By applying a bias voltage to the upper metal layer and the lower metal layer, the deflection angle α of the director of liquid crystal molecules in the liquid crystal cell is changed, so that the effective refractive index of the liquid crystal changes, and the phase of the device also changes accordingly, thereby achieving the purpose of dynamic phase control. The performances of the upper metal layer, the lower metal layer and liquid crystal layer are optimized and compared with each other. The performance characteristics of the phase shifter under different values of deflection angle α and different values of incident angle θ are analyzed by frequency domain finite integration method. Through the simulation optimization and comparison of the size of the upper and lower metal layers and the thickness of the liquid crystal layer, the optimum is obtained. The simulation results show that the transmittance of the terahertz liquid crystal phase shifter can reach 0.968 in a frequency between 1.68–1.78 THz, and the insertion loss can be as low as 0.3 dB. When the frequency is 1.7396 THz, the maximum phase shift of the terahertz phase shifter is 352.625°. The phase shift exceeds 352° in a frequency range of 1.7315–1.7396 THz (Bandwidth is 8.1 GHz). This simple metamaterial multilayer structure provides a new method of controlling terahertz waves, and has broad application prospects in terahertz imaging, sensing and other fields.
      通信作者: 陈鹤鸣, chhm@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61571237)和江苏省自然科学基金(批准号: BK20151509)资助的课题.
      Corresponding author: Chen He-Ming, chhm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571237) and the Natural Science Foundation of the Jiangsu Province, China (Grant No. BK20151509).
    [1]

    Clough B, Dai J M, Zhang X C 2012 Mater. Today 15 50Google Scholar

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207405Google Scholar

    [3]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 68 247802Google Scholar

    Chen J, Yang M S, Li Y T, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [4]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [5]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies G A, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [6]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [7]

    Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 3100Google Scholar

    [8]

    He Q, Sun S, Zhou L 2019 Research 2019 1849272Google Scholar

    [9]

    Hashemi M R, Cakmakyapan S, Jarrahi M 2017 Rep. Prog. Phys. 80 094501Google Scholar

    [10]

    丛龙庆 2021 中国激光 48 157Google Scholar

    Cong L Q 2021 Chin. J. Lasers 48 157Google Scholar

    [11]

    Koeberle M, Hoefle M, Gaebler A, Penirschke A, Jakoby R 2011 International Conference on Infrared, Millimeter and Terahertz Waves Houston, The United States, October 2–7, 2011 p1

    [12]

    Jost M, Strunck S, Heunisch A, Wiens A, Prasetiadi A E, Weickhmann C, Schulz B, Quibeldey M, Karabey O H, Rabe T, Follmann R, Koether D, Jakoby R 2015 European Microwave Conference Paris, France, September 7–10, 2015 p1260

    [13]

    Gao S, Yang J, Wang P, Zheng A, Lu H, Deng G, Lai W, Yin Z 2018 Appl. Sciences 8 2528Google Scholar

    [14]

    Inoue Y, Kubo H, Shikada T, Moritake H 2019 Macromol. Mater. 304 1800766Google Scholar

    [15]

    龙洁, 李九生 2021 70 074201Google Scholar

    Long J, Li J S 2021 Acta Phys. Sin. 70 074201Google Scholar

    [16]

    Zhang X, Fan F, Zhang C Y, Ji Y Y, Wang X H, Chang S J 2020 Opt. Mater. Express 10 282Google Scholar

    [17]

    高盛 2020 硕士学位论文 (合肥: 合肥工业大学)

    Gao S 2020 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [18]

    于雪 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yu X 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [19]

    Yaghmaee P, Karabey O H, Bates B, Fumeaux C, Jakoby R 2013 Int. J. Antenn. Propag. 10 824214

    [20]

    Gennes P G D, Alben R 1975 Phys. Today 28 54Google Scholar

    [21]

    Gaebler A, Moessinger A, Goelden F, et al. 2009 Int. J. Antenn. Propag. 6 876989Google Scholar

    [22]

    Nickel M, Jiménez-Sáez A, Agrawal P, Gadallah A, Malignaggi A, Schuster C, Reese R, Tesmer H, Ploat E Wang D W, Schumacher P, Jakoby R 2020 IEEE Access 8 77833Google Scholar

    [23]

    Blinov L M, Chigrinov V G 1994 Electrooptic Effects in Liquid Crystal Materials (New York: Springer Sci. Business Media) p1

    [24]

    Collings, Peter J 1998 Am. J. Phys. 66 551

    [25]

    Gölden F 2010 Ph. D. Dissertation (Hesse: Technische Universitaet Darmstadt)

    [26]

    王俊卿 2020 硕士学位论文 (成都: 电子科技大学)

    Wang J Q 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

    [27]

    Smith D R, Dalichaouch R, Kroll N, Schultz S, Mccall S L, Platzman P M 1993 J. Opt. Soc. Am. B 10 314

    [28]

    Pozar D M 2012 URSI Radio Science Bulletin 342 26

  • 图 1  超材料太赫兹液晶移相器结构 (a)周期三维结构; (b)单元三维结构; 上层(c)和下层(d)金属结构俯视图

    Fig. 1.  Structure diagram of metamaterial terahertz liquid crystal phase shifter: (a) Periodic three-dimensional structure; (b) unit three-dimensional structure; top view of upper (c) and lower (d) unit structure.

    图 2  盒内液晶分子排列方向图 (a) V = 0, 液晶粒子未偏转; (b) V = Vth, 液晶粒子完全偏转

    Fig. 2.  The alignment direction of liquid crystal molecules: (a) V = 0, the liquid crystal particles are not deflected; (b) V = Vth, the liquid crystal particles are completely deflected.

    图 3  液晶分子偏转示意图

    Fig. 3.  Schematic diagram of the deflection of liquid crystal molecules.

    图 4  V = 0与V = Vth时, 太赫兹移相器的太赫兹波透射曲线和插入损耗

    Fig. 4.  Terahertz wave transmission curve and insertion loss of the terahertz phase shifter when V = 0 and V = Vth.

    图 5  太赫兹移相器在工作频段1.731—1.740 THz内的相移曲线(a)和透射系数(b)

    Fig. 5.  Phase shift curve (a) and transmission coefficient (b) of the terahertz phase shifter in the working frequency range of 1.731–1.740 THz.

    图 6  太赫兹移相器在工作频段范围内不同α对应的相移曲线(a)和透射系数(b)

    Fig. 6.  Phase shift curve (a) and transmission coefficient (b) of the terahertz phase shifter in the working frequency.

    图 7  1.7315 THz时3层结构电场能量分布图, 包括下金属层 (a) V = 0, (b) V = Vth; 液晶层 (c) V = 0, (d) V = Vth; 上金属层(e) V = 0, (f) V = Vth

    Fig. 7.  Electric field energy distribution diagram of the three-tier structure at 1.7315 THz. Lower metal layer: (a) V = 0, (b) V = Vth; liquid crystal layer: (c) V = 0, (d) V = Vth; upper metal layer: (e) V = 0, (f) V = Vth.

    图 8  θ = 10°—80°, 在1.7311.740 THz内的(a), (b)相移曲线和(c), (d)透射系数 (a) V = 0; (b) V = Vth; (c) V = 0; (d) V = Vth; (e) θ = 50°时太赫兹移相器的相移量

    Fig. 8.  (a), (b) Phase shift curve and (c), (d) transmission coefficient with θ = 10°—80° at 1.731–1.740 THz: (a) V = 0; (b) V = Vth; (c) V = 0; (d) V = Vth; (e) phase shift amount of the terahertz phase shifter at θ = 50°.

    表 1  HFUT-HB01型号液晶的材料性能参数

    Table 1.  Material performance parameters of HFUT-HB01 liquid crystal.

    $ {\varepsilon _ \bot } $$ {\tan}{\delta _ \bot } $${\varepsilon _{//} }$${\tan}{\delta _{//} }$$ {K_{11}} $/pN
    2.470.023.600.0225
    下载: 导出CSV

    表 2  移相器主要性能参数比较

    Table 2.  Comparison of main performance parameters of phase shifters.

    文献γ/dBΔφmax/(°)工作频率f带宽/GHz相移量/(°)Fq
    本文0.30352.6251.7396 THz8.13521175.40
    [11]70.0001.000 THz70
    [13]306.00124.5 GHz4.5300
    [14]3.09180.000.400 THz18058.25
    [22]5.50387.0025.00 GHz10.070.36
    [15]2.00355.370.736 THz22.0350175.00
    下载: 导出CSV
    Baidu
  • [1]

    Clough B, Dai J M, Zhang X C 2012 Mater. Today 15 50Google Scholar

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207405Google Scholar

    [3]

    陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 68 247802Google Scholar

    Chen J, Yang M S, Li Y T, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802Google Scholar

    [4]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [5]

    Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies G A, Ritchie D A, Lotti R C, Rossi F 2002 Nature 417 156Google Scholar

    [6]

    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M 2010 Appl. Opt. 49 E48Google Scholar

    [7]

    Shaltout A M, Shalaev V M, Brongersma M L 2019 Science 364 3100Google Scholar

    [8]

    He Q, Sun S, Zhou L 2019 Research 2019 1849272Google Scholar

    [9]

    Hashemi M R, Cakmakyapan S, Jarrahi M 2017 Rep. Prog. Phys. 80 094501Google Scholar

    [10]

    丛龙庆 2021 中国激光 48 157Google Scholar

    Cong L Q 2021 Chin. J. Lasers 48 157Google Scholar

    [11]

    Koeberle M, Hoefle M, Gaebler A, Penirschke A, Jakoby R 2011 International Conference on Infrared, Millimeter and Terahertz Waves Houston, The United States, October 2–7, 2011 p1

    [12]

    Jost M, Strunck S, Heunisch A, Wiens A, Prasetiadi A E, Weickhmann C, Schulz B, Quibeldey M, Karabey O H, Rabe T, Follmann R, Koether D, Jakoby R 2015 European Microwave Conference Paris, France, September 7–10, 2015 p1260

    [13]

    Gao S, Yang J, Wang P, Zheng A, Lu H, Deng G, Lai W, Yin Z 2018 Appl. Sciences 8 2528Google Scholar

    [14]

    Inoue Y, Kubo H, Shikada T, Moritake H 2019 Macromol. Mater. 304 1800766Google Scholar

    [15]

    龙洁, 李九生 2021 70 074201Google Scholar

    Long J, Li J S 2021 Acta Phys. Sin. 70 074201Google Scholar

    [16]

    Zhang X, Fan F, Zhang C Y, Ji Y Y, Wang X H, Chang S J 2020 Opt. Mater. Express 10 282Google Scholar

    [17]

    高盛 2020 硕士学位论文 (合肥: 合肥工业大学)

    Gao S 2020 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese)

    [18]

    于雪 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yu X 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [19]

    Yaghmaee P, Karabey O H, Bates B, Fumeaux C, Jakoby R 2013 Int. J. Antenn. Propag. 10 824214

    [20]

    Gennes P G D, Alben R 1975 Phys. Today 28 54Google Scholar

    [21]

    Gaebler A, Moessinger A, Goelden F, et al. 2009 Int. J. Antenn. Propag. 6 876989Google Scholar

    [22]

    Nickel M, Jiménez-Sáez A, Agrawal P, Gadallah A, Malignaggi A, Schuster C, Reese R, Tesmer H, Ploat E Wang D W, Schumacher P, Jakoby R 2020 IEEE Access 8 77833Google Scholar

    [23]

    Blinov L M, Chigrinov V G 1994 Electrooptic Effects in Liquid Crystal Materials (New York: Springer Sci. Business Media) p1

    [24]

    Collings, Peter J 1998 Am. J. Phys. 66 551

    [25]

    Gölden F 2010 Ph. D. Dissertation (Hesse: Technische Universitaet Darmstadt)

    [26]

    王俊卿 2020 硕士学位论文 (成都: 电子科技大学)

    Wang J Q 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

    [27]

    Smith D R, Dalichaouch R, Kroll N, Schultz S, Mccall S L, Platzman P M 1993 J. Opt. Soc. Am. B 10 314

    [28]

    Pozar D M 2012 URSI Radio Science Bulletin 342 26

计量
  • 文章访问数:  8756
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-04-26
  • 上网日期:  2022-08-13
  • 刊出日期:  2022-09-05

/

返回文章
返回
Baidu
map