Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb

Zhou Kang Li Hua Wan Wen-Jian Li Zi-Ping Cao Jun-Cheng

Citation:

Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb

Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng
PDF
HTML
Get Citation
  • The frequency comb which is characterized by equally-spaced frequency lines with high mode coherence has received much attention since its first demonstration in near-infrared and optical frequency range. In the terahertz frequency range, the electrically-pumped terahertz quantum cascade laser (THz QCL) based on semiconductors is an ideal candidate for achieving frequency comb operation in a frequency range between 1 THz and 5 THz. The group velocity dispersion (GVD) is a key factor for the frequency comb. A higher GVD can pull the frequencies from their equidistant values and limit the comb bandwidth. Therefore the laser dispersion needs to be compensated for in order to make the total GVD sufficiently low and flat, such as using a Gires-Tournois interferometer (GTI) or the double chirped mirror (DCM). However, a successful design still depends on the knowledge of the total GVD in the laser. In this paper, we show how to calculate the GVD in metal-metal waveguide THz QCLs by taking into account the dispersions from the GaAs material, the waveguide, and the laser gain, which conduces to the understanding of the frequency comb behavior. The waveguide loss is modelled by the finite element method. The loss due to intersubband absorption is calculated by Fermi's gold rule. All the losses, i.e., waveguide loss, mirror loss, and intersubband absorption loss, are summed up to calculate the clamped gain. The material loss can be calculated by using the reststrahlen band model. Because of these losses and gain, the refractive index needs to be replaced by a complex refractive index. The real part of the complex refractive index is the refractive index, which can be calculated from the Kramers-Kronig relationship that connects the loss or gain with the refractive index. Then the GVD introduced by the material loss, waveguide loss, and clamped gain can be finally calculated. The results show that the total GVD of THz QCL is approximately –8 × 105~8 × 105 fs2/mm which is strongly determined by the clamped gain. Finally, the developed numerical model is employed to study the dispersion compensation effect of a GTI mirror which is coupled into a QCL gain cavity. The design of the THz QCL based on GTI structure is more flexible and feasible than that of the DCM. The result shows that by carefully designing the geometry of GTI, the dispersion of a THz QCL can be compensated for, thus achieving the broadband terahertz frequency combs.
      Corresponding author: Li Hua, hua.li@mail.sim.ac.cn
    • Funds: Project supported by the “Hundred-Talent" Program of Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 61875220, 61575214, 61404150, 61405233, 61704181), the National Key R&D Program of China (Grant Nos. 2017YFF0106302, 2017YFA0701005), and Shanghai Municipal Commission of Science and Technology, China (Grant No. 17YF1430000).
    [1]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [2]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [3]

    Williams B S 2007 Nature Photon. 1 517Google Scholar

    [4]

    Diddams S A 2010 J. Opt. Soc. Am. B-Opt. Phys. 27 B51Google Scholar

    [5]

    Siegel P H 2002 IEEE Trans. Microw. Theory Tech. 50 Pii s0018-9480(02)01958-0 910

    [6]

    Villares G F F 2016 Ph. D. Dissertation (Zurich: Swiss Federal Institute of Technology Zurich)

    [7]

    Hugi A, Villares G, Blaser S, Liu H C, Faist J 2012 Nature 492 229Google Scholar

    [8]

    Vitiello M S, Scalari G, Williams B, De Natale P 2015 Opt. Express 23 5167Google Scholar

    [9]

    Tzenov P, Burghoff D, Hu Q, Jirauschek C 2017 IEEE T. Thz. Sci. Techn. 7 351Google Scholar

    [10]

    Bachmann D, Rosch M, Scalari G, Beck M, Faist J, Unterrainer K, Darmo J 2016 Appl. Phys. Lett. 109 221107Google Scholar

    [11]

    Treacy E B 1969 IEEE J. Quantum Electron. QE 5 454

    [12]

    Bonod N, Neauport J 2016 Adv. Opt. Photonics 8 156Google Scholar

    [13]

    Fork R L, Martinez O E, Gordon J P 1984 Opt. Lett. 9 150Google Scholar

    [14]

    Kane S, Squier J 1997 J. Opt. Soc. Am. B-Opt. Phys. 14 661Google Scholar

    [15]

    Matuschek N, Kartner F X, Keller U 1998 IEEE J. Sel. Top. Quantum Electron. 4 197Google Scholar

    [16]

    Tempea G, Krausz F, Spielmann C, Ferencz K 1998 IEEE J. Sel. Top. Quantum Electron. 4 193Google Scholar

    [17]

    Kartner F X, Morgner U, Ell R, Schibli T, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 2001 J. Opt. Soc. Am. B-Opt. Phys. 18 882Google Scholar

    [18]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [19]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272

    [20]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photonics Rev. 11 1700013Google Scholar

    [21]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nature Photon. 8 462Google Scholar

    [22]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [23]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [24]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nature Photon. 9 42

    [25]

    Bidaux Y, Sergachev I, Wuester W, Maulini R, Gresch T, Bismuto A, Blaser S, Muller A, Faist J 2017 Opt. Lett. 42 1604Google Scholar

    [26]

    朱永浩, 黎华, 万文坚, 周涛, 曹俊诚 2017 66 099501Google Scholar

    Zhu Y H, Li H, Wan W J, Zhou T, Cao J C 2017 Acta Phys. Sin. 66 099501Google Scholar

    [27]

    Weber E R, Willardson R K, Liu H, Capasso F 1999 Intersubband Transitions in Quantum Wells: Physics and Device Applications (Vol. 62) (Beijing: Academic Press)

    [28]

    Li H, Cao J C, Lue J T 2008 J. Appl. Phys. 103 103113Google Scholar

    [29]

    Adachi S 1994 GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (Beijing: World Scientific Press)

    [30]

    Gires F, Tournois P 1964 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258 6112

    [31]

    Lu Q Y, Manna S, Wu D H, Slivken S, Razeghi M 2018 Appl. Phys. Lett. 112 141104Google Scholar

  • 图 1  由于GVD引起的频率偏移Δ与模式数目m的关系

    Figure 1.  The relation between frequency offset Δ and mode numbers m.

    图 2  复折射率随频率变化的关系

    Figure 2.  The relation between complex refractive index and frequency.

    图 3  (a)计算得到的波导损耗${\alpha _{\rm{W}}}$与频率的关系; (b)等效折射率与频率的关系

    Figure 3.  (a) Simulated the relationship between waveguide loss ${\alpha _{\rm{W}}}$ and frequency; (b) the relation between the effective refractive index and frequency.

    图 4  器件增益与频率的关系

    Figure 4.  The relation between the gain and frequency.

    图 5  子带电子吸收随频率变化的关系

    Figure 5.  The relation between intersubband absorption and frequency.

    图 6  材料折射率与频率的关系

    Figure 6.  The relation between the material refractive index and frequency.

    图 7  器件的色散与频率的关系

    Figure 7.  The relation between GVD and frequency.

    图 8  (a)基于GTI结构THz QCL色散补偿的三维示意图; (b)不同前端面反射系数下的群延迟色散与频率的关系

    Figure 8.  (a) Three-dimensional schematic of the THz QCL based on GTI structure for dispersion compensations; (b) calculated group delay dispersions as a function of frequency for different reflection coefficients.

    Baidu
  • [1]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [2]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [3]

    Williams B S 2007 Nature Photon. 1 517Google Scholar

    [4]

    Diddams S A 2010 J. Opt. Soc. Am. B-Opt. Phys. 27 B51Google Scholar

    [5]

    Siegel P H 2002 IEEE Trans. Microw. Theory Tech. 50 Pii s0018-9480(02)01958-0 910

    [6]

    Villares G F F 2016 Ph. D. Dissertation (Zurich: Swiss Federal Institute of Technology Zurich)

    [7]

    Hugi A, Villares G, Blaser S, Liu H C, Faist J 2012 Nature 492 229Google Scholar

    [8]

    Vitiello M S, Scalari G, Williams B, De Natale P 2015 Opt. Express 23 5167Google Scholar

    [9]

    Tzenov P, Burghoff D, Hu Q, Jirauschek C 2017 IEEE T. Thz. Sci. Techn. 7 351Google Scholar

    [10]

    Bachmann D, Rosch M, Scalari G, Beck M, Faist J, Unterrainer K, Darmo J 2016 Appl. Phys. Lett. 109 221107Google Scholar

    [11]

    Treacy E B 1969 IEEE J. Quantum Electron. QE 5 454

    [12]

    Bonod N, Neauport J 2016 Adv. Opt. Photonics 8 156Google Scholar

    [13]

    Fork R L, Martinez O E, Gordon J P 1984 Opt. Lett. 9 150Google Scholar

    [14]

    Kane S, Squier J 1997 J. Opt. Soc. Am. B-Opt. Phys. 14 661Google Scholar

    [15]

    Matuschek N, Kartner F X, Keller U 1998 IEEE J. Sel. Top. Quantum Electron. 4 197Google Scholar

    [16]

    Tempea G, Krausz F, Spielmann C, Ferencz K 1998 IEEE J. Sel. Top. Quantum Electron. 4 193Google Scholar

    [17]

    Kartner F X, Morgner U, Ell R, Schibli T, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 2001 J. Opt. Soc. Am. B-Opt. Phys. 18 882Google Scholar

    [18]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [19]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272

    [20]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photonics Rev. 11 1700013Google Scholar

    [21]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nature Photon. 8 462Google Scholar

    [22]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [23]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [24]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nature Photon. 9 42

    [25]

    Bidaux Y, Sergachev I, Wuester W, Maulini R, Gresch T, Bismuto A, Blaser S, Muller A, Faist J 2017 Opt. Lett. 42 1604Google Scholar

    [26]

    朱永浩, 黎华, 万文坚, 周涛, 曹俊诚 2017 66 099501Google Scholar

    Zhu Y H, Li H, Wan W J, Zhou T, Cao J C 2017 Acta Phys. Sin. 66 099501Google Scholar

    [27]

    Weber E R, Willardson R K, Liu H, Capasso F 1999 Intersubband Transitions in Quantum Wells: Physics and Device Applications (Vol. 62) (Beijing: Academic Press)

    [28]

    Li H, Cao J C, Lue J T 2008 J. Appl. Phys. 103 103113Google Scholar

    [29]

    Adachi S 1994 GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (Beijing: World Scientific Press)

    [30]

    Gires F, Tournois P 1964 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258 6112

    [31]

    Lu Q Y, Manna S, Wu D H, Slivken S, Razeghi M 2018 Appl. Phys. Lett. 112 141104Google Scholar

  • [1] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [2] Liao Xiao-Yu, Cao Jun-Cheng, Li Hua. Research progress of terahertz semiconductor optical frequency combs. Acta Physica Sinica, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [3] Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui. Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers. Acta Physica Sinica, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [4] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [5] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [6] Mou Yuan, Wu Zhen-Sen, Zhang Geng, Gao Yan-Qing, Yang Zhi-Qiang. Establishment of THz dispersion model of metals based on Kramers-Kronig relation. Acta Physica Sinica, 2017, 66(12): 120202. doi: 10.7498/aps.66.120202
    [7] Zhu Yong-Hao, Li Hua, Wan Wen-Jian, Zhou Tao, Cao Jun-Cheng. Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers. Acta Physica Sinica, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [8] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [9] Liao Lei, Yi Wang-Min, Yang Zai-Hua, Wu Guan-Hao. Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser. Acta Physica Sinica, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [10] Li Na, Bai Ya, Liu Peng. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses. Acta Physica Sinica, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [11] Sun Qing, Yang Yi, Deng Yu-Qiang, Meng Fei, Zhao Kun. High-precision measurement of terahertz frequency using an unstabilized femtosecond laser. Acta Physica Sinica, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [12] Liu Hai-Wen, Zhan Xin, Ren Bao-Ping. Design of triple bandpass frequency selective surface in terahertz wave band for radio astronomy. Acta Physica Sinica, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [13] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation. Acta Physica Sinica, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [14] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [15] Wan Wen-Jian, Yin Rong, Tan Zhi-Yong, Wang Feng, Han Ying-Jun, Cao Jun-Cheng. Study of 2.9 THz quantum cascade laser based on bound-to-continuum transition. Acta Physica Sinica, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [16] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [17] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [18] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [19] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [20] Chang Jun, Li Hua, Han Ying-Jun, Tan Zhi-Yong, Cao Jun-Cheng. Material growth and characterization of terahertz quantum-cascade lasers. Acta Physica Sinica, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
Metrics
  • Abstract views:  8222
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2019
  • Accepted Date:  12 March 2019
  • Available Online:  01 May 2019
  • Published Online:  20 May 2019

/

返回文章
返回
Baidu
map