搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管

郭立强 温娟 程广贵 袁宁一 丁建宁

引用本文:
Citation:

基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管

郭立强, 温娟, 程广贵, 袁宁一, 丁建宁

Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte

Guo Li-Qiang, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning
PDF
导出引用
  • 本文利用旋涂技术在氧化铟锡塑料衬底上,制备了硅烷偶联剂(-氨丙基三乙氧基硅烷)-氧化石墨烯固态电解质;以此固态电解质作为栅介质,进一步研究了双侧栅耦合电场质子/电子杂化氧化铟锌薄膜晶体管的电学特性. 研究发现-氨丙基三乙氧基硅烷-氧化石墨烯固态电解质的双电层电容和质子电导率分别高达2.03 F/cm2和6.9910-3 S/cm;由于-氨丙基三乙氧基硅烷-氧化石墨烯复合固态电解质具有较大的双电层电容和质子电导率,利用其作为栅介质的质子/电子杂化氧化铟锌薄膜晶体管功耗低(其工作电压仅为约2 V),其开关比和场效应迁移率分别为1.23107和24.72 cm2/(Vs). 由于-氨丙基三乙氧基硅烷-氧化石墨烯固态电解质的电容耦合作用,氧化铟锌薄膜晶体管在双侧栅电压刺激下,可有效地调控器件的阈值电压、亚阈值摆幅和场效应迁移率,并可实现与门逻辑运算功能.
    Low-voltage electric-double-layer oxide-based thin-film transistors are of great prospect and investigative value in the fields of micro multi-state memory devices, detectors, electrochemical sensors, and biological synapses simulation, and so on. In addition, low-voltage electric-double-layer oxide-based thin-film transistors have increasingly attracted attention among researchers due to the characteristics of high mobility, high visible light transmittance and low temperature preparation. Currently, the researches about low-voltage electric-double-layer oxide-based thin-film transistors are broadly divided into two aspects. On the one hand, the researches focus on ZnO as a channel layer, source and drain electrode materials, then gradually develop into In, Sn and Ga oxides as well as complex oxides containing these elements, which has made tremendous progress. On the other hand, the development and research of the gate dielectric materials have received more attention. It is found that by adopting an organic/inorganic proton conductor film as the gate dielectric of low-voltage electric-double-layer oxide-based thin-film transistors, the protons in the gate dielectric will move in the direction away from gate, and finally accumulate on the surface of gate dielectric layer close to the channel layer, with the positive bias applied to the gate. In conclusion, though the researches about low-voltage electricdouble- layer oxide-based thin-film transistors have already made great progress, further explorations and investigations are necessary from its wide applications. Consequently, the development of new material architecture of low-voltage electric-double-layer oxide-based thin-film transistor is one way to achieve this goal. Silane coupling agents (3-triethoxysilylpropyla-mine)-graphene oxide (KH550-GO) solid electrolyte is prepared on plastic substrate by spin coating process. The electrical performances of dual in-plane-gate coupled protonic/electronic hybrid IZO thin film transistor gated by KH550-GO solid electrolyte are further studied. The results indicate that the electric-double-layer capacitance and proton conductivity of KH550-GO solid electrolyte respectively achieve 2.03 F/cm2 and 6.9910-3 S/cm, respectively. Due to high electric-double-layer capacitance and proton conductivity, protonic/electronic hybrid IZO thin film transistor gated by KH550-GO solid electrolyte has lower power consumption (its operation voltage ~2 V). Current on/off ratio of 1.23107 and field-effect mobility of 24.72 cm2/(Vs) are shown in the device. Due to the capacitive coupling effect of KH550-GO solid electrolyte, the device with the stimulus of dual in-plane-gate voltage, can effectively modulate the threshold voltage, the subthreshold swing and the field-effect mobility, and demonstrate AND logic operation successfully. Dual in-plane-gate coupled protonic/electronic hybrid IZO thin film transistors prepared in this paper have potential applications in the field of biosensors and artificial synapses.
      通信作者: 温娟, wenjuan930924@sina.com
    • 基金项目: 国家自然科学基金(批准号:51402321)、江苏省光伏科学与技术国家重点实验室培育建设点开放课题基金(批准号:SKLPSTKF201503)、江苏省博士后科研资助计划(批准号:1402071B)和江苏大学高级人才基金(批准号:14JDG049)资助的课题.
      Corresponding author: Wen Juan, wenjuan930924@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51402321), the Research Fund of Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, China (Grant No. SKLPSTKF201503), the Postdoctoral Research Funding Plan of Jiangsu Province, China (Grant No. 1402071B), and the Starting Foundation of Jiangsu University Advanced Talent (Grant No. 14JDG049).
    [1]

    Guo L Q, Wan C J, Zhu L Q, Wan Q 2013 Appl. Phys. Lett. 103 113503

    [2]

    Guo D, Zhou M, Zhang X A, Xu C, Jiang J, Gao F, Wan Q, Li Q H, Wang T H 2013 Anal. Chim. Acta 773 83

    [3]

    Kim K, Chen L C, Truong Q Y, Shen A M, Chen Y 2013 Adv. Mater. 25 1693

    [4]

    Gkoupidenis P, Scaefer N, Strakosas X, Fairfield J A, G G Malliaras 2015 Appl. Phys. Lett. 107 263302

    [5]

    Guo L Q, Yang Y Y, Zhu L Q, Wu G D, Zhou J M 2013 AIP Adv. 3 072110

    [6]

    Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Martins R, Pereira L 2004 Appl. Phys. Lett. 85 2541

    [7]

    Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese) [赵孔胜, 轩瑞杰, 韩笑, 张耕铭 2012 61 197201]

    [8]

    Chong E, Kim S H, Cho E A, Jang G E, Lee S Y 2011 Curr. Appl. Phys. 11 S132

    [9]

    Chen A H, Tao H, Zhang H Z, Liang L Y, Zhang H Z, iang L Y, Liu M Z, Yu Z, Wan Q 2010 Microelectron. Eng. 87 2019

    [10]

    Zhang H Z, Cao H T, Chen A H, Liang L Y, Liu M Z, Yu Z, Wan Q 2010 Solid State Electrn. 54 479

    [11]

    Lee S, Park H, Paine D C 2012 Thin Solid Films 520 3769

    [12]

    Kergoat L, Herlogsson L, Braga D, Piro B, Pham M C, Crispin X, Berggren M, Horowitz G 2010 Adv. Mater. 22 2565

    [13]

    Zhou B, Sun J, Han X, Jiang J, Wan Q 2011 IEEE Electron. Dev. Lett. 32 1549

    [14]

    Matthew J P, Frisbie C D 2007 J. Am. Chem. Soc. 129 6599

    [15]

    Herlogsson L, Crispin X, Robinson N D, Sandberg M, Hagel O J, Gustafsson G, Berggren M 2007 Adv. Mater. 19 97

    [16]

    Kim S H, Yang S Y, Shin K, Jeon H, Lee J W, Hong K P, Park C E 2006 Appl. Phys. Lett. 89 183516

    [17]

    Larsson O, Said E, Burggren M, Crispin X 2009 Adv. Funct. Mater. 19 3334

    [18]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 62 117305]

    [19]

    Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344

    [20]

    Jiang J, Sun J, Dou W, Zhou B, Wan Q 2011 Appl. Phys. Lett. 99 193502

    [21]

    Guo L Q, Huang Y K, Shi Y Y, Cheng G G, Ding J N 2015 J. Phys. D: Appl. Phys. 48 285103

    [22]

    Liu S, Tian J Q, Wang L, Luo Y L, Lua W B, Sun X B 2011 Biosens. Bioelectron. 26 4491

  • [1]

    Guo L Q, Wan C J, Zhu L Q, Wan Q 2013 Appl. Phys. Lett. 103 113503

    [2]

    Guo D, Zhou M, Zhang X A, Xu C, Jiang J, Gao F, Wan Q, Li Q H, Wang T H 2013 Anal. Chim. Acta 773 83

    [3]

    Kim K, Chen L C, Truong Q Y, Shen A M, Chen Y 2013 Adv. Mater. 25 1693

    [4]

    Gkoupidenis P, Scaefer N, Strakosas X, Fairfield J A, G G Malliaras 2015 Appl. Phys. Lett. 107 263302

    [5]

    Guo L Q, Yang Y Y, Zhu L Q, Wu G D, Zhou J M 2013 AIP Adv. 3 072110

    [6]

    Fortunato E, Barquinha P, Pimentel A, Goncalves A, Marques A, Martins R, Pereira L 2004 Appl. Phys. Lett. 85 2541

    [7]

    Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese) [赵孔胜, 轩瑞杰, 韩笑, 张耕铭 2012 61 197201]

    [8]

    Chong E, Kim S H, Cho E A, Jang G E, Lee S Y 2011 Curr. Appl. Phys. 11 S132

    [9]

    Chen A H, Tao H, Zhang H Z, Liang L Y, Zhang H Z, iang L Y, Liu M Z, Yu Z, Wan Q 2010 Microelectron. Eng. 87 2019

    [10]

    Zhang H Z, Cao H T, Chen A H, Liang L Y, Liu M Z, Yu Z, Wan Q 2010 Solid State Electrn. 54 479

    [11]

    Lee S, Park H, Paine D C 2012 Thin Solid Films 520 3769

    [12]

    Kergoat L, Herlogsson L, Braga D, Piro B, Pham M C, Crispin X, Berggren M, Horowitz G 2010 Adv. Mater. 22 2565

    [13]

    Zhou B, Sun J, Han X, Jiang J, Wan Q 2011 IEEE Electron. Dev. Lett. 32 1549

    [14]

    Matthew J P, Frisbie C D 2007 J. Am. Chem. Soc. 129 6599

    [15]

    Herlogsson L, Crispin X, Robinson N D, Sandberg M, Hagel O J, Gustafsson G, Berggren M 2007 Adv. Mater. 19 97

    [16]

    Kim S H, Yang S Y, Shin K, Jeon H, Lee J W, Hong K P, Park C E 2006 Appl. Phys. Lett. 89 183516

    [17]

    Larsson O, Said E, Burggren M, Crispin X 2009 Adv. Funct. Mater. 19 3334

    [18]

    Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305 (in Chinese) [朱德明, 门传玲, 曹敏, 吴国栋 2013 62 117305]

    [19]

    Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344

    [20]

    Jiang J, Sun J, Dou W, Zhou B, Wan Q 2011 Appl. Phys. Lett. 99 193502

    [21]

    Guo L Q, Huang Y K, Shi Y Y, Cheng G G, Ding J N 2015 J. Phys. D: Appl. Phys. 48 285103

    [22]

    Liu S, Tian J Q, Wang L, Luo Y L, Lua W B, Sun X B 2011 Biosens. Bioelectron. 26 4491

  • [1] 纪婷伟, 白刚. 双轴错配应变对铁电双栅负电容晶体管性能的影响.  , 2023, 72(6): 067701. doi: 10.7498/aps.72.20222190
    [2] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管.  , 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [3] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性.  , 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [4] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展.  , 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [5] 韩波, 梁雅琼. 质子成像法测量电容线圈靶磁场.  , 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [6] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件.  , 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [7] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管.  , 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [8] 刘勇波, 菅永军. 具有聚电解质层圆柱形纳米通道中的电动能量转换效率.  , 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [9] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响.  , 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [10] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 宋建军, 周春宇, 李妤晨. 应变SiGe p 型金属氧化物半导体场效应管栅电容特性研究.  , 2013, 62(12): 127102. doi: 10.7498/aps.62.127102
    [11] 胡佳, 徐轶君, 叶超. CHF3双频电容耦合放电等离子体特性研究.  , 2010, 59(4): 2661-2665. doi: 10.7498/aps.59.2661
    [12] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析.  , 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [13] 苏 杰, 王继锁, 梁宝龙, 张晓燕. 介观电容耦合LC电路在有限温度下的能量及热效应.  , 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [14] 邱深玉, 蔡绍洪. 耗散介观电容耦合电路的量子效应.  , 2006, 55(2): 816-819. doi: 10.7498/aps.55.816
    [15] 缪中林, 陈平平, 蔡玮颖, 李志锋, 徐文兰, 袁先漳, 刘平, 史国良, 陈昌明, 朱德彰, 潘浩昌, 胡军, 李明乾, 陆卫. 组合注入质子导致不对称耦合双量子阱截面混合效应研究.  , 2001, 50(1): 116-119. doi: 10.7498/aps.50.116
    [16] 王继锁, 刘堂昆, 詹明生. 平移压缩Fock态下介观电容耦合电路的量子涨落.  , 2000, 49(11): 2271-2275. doi: 10.7498/aps.49.2271
    [17] 王继锁, 韩保存, 孙长勇. 介观电容耦合电路的量子涨落.  , 1998, 47(7): 1187-1192. doi: 10.7498/aps.47.1187
    [18] 胡永健, 彭初兵, 方瑞宜, 李文君, 戴道生. [Fe/Cr]多层膜及掺入Si中介层后的层间耦合和磁电阻效应.  , 1996, 45(10): 1744-1748. doi: 10.7498/aps.45.1744
    [19] 郑振华, 陈羽, 缪容之. BaTiO3半导体陶瓷从PTC特性向边界层电容效应过渡问题探讨——晶界势垒模型的应用.  , 1996, 45(9): 1543-1550. doi: 10.7498/aps.45.1543
    [20] 蔡学榆, 尹道乐. 多层膜超导体的邻近效应.  , 1981, 30(5): 700-704. doi: 10.7498/aps.30.700
计量
  • 文章访问数:  6815
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-06-16
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map