-
相比于有机体系锂离子电池, 全固态锂金属电池有望同时提高电池安全性和能量密度, 因而受到广泛的研究和关注. 固态电解质的电化学窗口决定了电解质在高压电池充放电过程中是否保持稳定. 目前的固态电解质, 热力学稳定电化学窗口较窄, 限制了其与高电压正极以及锂金属负极的匹配. 因而能否形成动力学稳定的界面, 决定了全固态电池是否能够持续高效工作. 本文总结归纳了固态电解质的热力学稳定窗口的实验和理论计算研究进展, 并对提高界面稳定性的实验进展进行了简述. 在此基础上, 提出构建动力学稳定性界面及防止锂枝晶的思路, 并展望了全固态电池界面构建的研究方向.Compared with the lithium-ion battery based on the non-aqueous electrolyte, all-solid-state lithium battery has received much attention and been widely studied due to its superiority in both safety and energy density. The electrochemical window of solid electrolyte determines whether the electrolyte remains stable during the cycling of the high-voltage battery. Current solid electrolytes typically have narrow electrochemical windows, thereby limiting their coupling with high voltage cathodes and lithium metal anode. Therefore, the formation of the stable interphase determines the stabilities of the all-solid-state batteries. Here in this work, both the experimental and theoretical progress of the electrochemical stability window of solid-state electrolytes are summarized. Besides, the experimental achievements in improving the stability of the interphase are also mentioned. On this basis, the strategies of constructing dynamically stable interphase and preventing the lithium dendrite branch crystal from forming are put forward. The future research direction of the interphase construction in all-solid-state batteries is also presented.
-
Keywords:
- all-solid-state electrolyte /
- electrochemical windows /
- interface stability /
- all-solid-state batteries
[1] Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928Google Scholar
[2] Janek J, Zeier W G 2016 Nat. Energy 1 1Google Scholar
[3] Armand M, Tarascon J M 2008 Nature 451 652Google Scholar
[4] Goodenough J B 2012 J. Solid State Electrochem. 16 2019Google Scholar
[5] Soloveichik G L 2014 Nature 505 163
[6] Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167Google Scholar
[7] Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219Google Scholar
[8] López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56Google Scholar
[9] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513Google Scholar
[10] Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945Google Scholar
[11] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar
[12] Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar
[13] Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775Google Scholar
[14] Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar
[15] Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428Google Scholar
[16] Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016Google Scholar
[17] Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar
[18] Rabenau A 1982 Solid State Ionics 6 277Google Scholar
[19] Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534Google Scholar
[20] Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627
[21] Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008Google Scholar
[22] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682
[23] Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473Google Scholar
[24] Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342Google Scholar
[25] Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar
[26] Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276Google Scholar
[27] Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar
[28] Xu K 2014 Chem. Rev. 114 11503Google Scholar
[29] Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208Google Scholar
[30] Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar
[31] Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119Google Scholar
[32] Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707Google Scholar
[33] Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2Google Scholar
[34] Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029Google Scholar
[35] Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9Google Scholar
[36] Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016Google Scholar
[37] Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510Google Scholar
[38] Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035Google Scholar
[39] Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764Google Scholar
[40] Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91Google Scholar
[41] Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258Google Scholar
[42] Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042Google Scholar
[43] He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24Google Scholar
[44] Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar
[45] Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565Google Scholar
[46] Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853Google Scholar
[47] Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar
[48] Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90Google Scholar
[49] Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192Google Scholar
[50] Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44Google Scholar
[51] Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179Google Scholar
[52] Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454Google Scholar
[53] Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414Google Scholar
[54] Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771Google Scholar
[55] Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar
[56] Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939Google Scholar
[57] Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar
[58] Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138Google Scholar
[59] Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888Google Scholar
[60] Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883Google Scholar
[61] Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21Google Scholar
[62] Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750Google Scholar
[63] Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328Google Scholar
[64] Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar
[65] Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98Google Scholar
[66] Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1Google Scholar
[67] de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609Google Scholar
[68] Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar
[69] McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011Google Scholar
[70] Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071Google Scholar
[71] Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458Google Scholar
[72] Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115Google Scholar
[73] Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar
[74] Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719Google Scholar
[75] Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar
[76] Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665Google Scholar
[77] Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412Google Scholar
[78] Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431Google Scholar
[79] Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar
[80] Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar
[81] Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53Google Scholar
[82] Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar
[83] Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972Google Scholar
[84] Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar
[85] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212Google Scholar
[86] Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar
[87] Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610Google Scholar
[88] Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190Google Scholar
[89] Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7Google Scholar
[90] Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar
[91] Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261Google Scholar
[92] Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73Google Scholar
[93] Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418Google Scholar
-
图 6 (a) 活性物质循环过程中体积应变对正极界面接触的影响以及低杨氏模量中间层维持界面牢固接触示意图; (b) 负极界面锂剥离态导致间隙的产生以及加压或合金支架维持界面接触示意图.
Fig. 6. (a) Schematic diagram of the effect of volume changes of the active materials during charge/discharge on the contact of cathode interface, and solid contact maintenance by low Young's modulus interlayer; (b) schematic diagram of the gap generated by Li stripping and solid contact maintenance by pressure or alloy frameworks.
图 7 基于材料数据库的热力学计算 (a)相稳定性: 被研究的亚稳态γ相能量与同成分下热力学平衡相的能量差(energy above hull)是衡量γ相稳定性的重要指标之一; (b) 巨电势相图(grand potential phase diagram): 衡量相稳定性在不同环境(比如对锂电位)下的变化; (c) 界面稳定性: 两相在不同比例时的二元相图及其相应的热力学反应焓变
Fig. 7. Schematic illustrations of thermodynamic calculations: (a) Schematic of an energy convex hull, indicating the energy above hull Ehull of a metastable γ phase and its decomposition reaction into the phase equilibria; (b) schematic of a GPPD, illustrating the evolution of phase equilibria under changing Li chemical potential mLi and an applied voltage 4; (c) mutual reaction energy versus composition of a pseudo-binary composed of LiCoO2 and Li3PS4. The star corresponds to the predicted phase equilibria with decomposition enthalpy DHD at the mixing ratio.
表 1 各类固体电解质电化学窗口的理论计算值与报道值概括
Table 1. Summary of the theoretical calculations and the reported values of electrochemical windows for different solid-state electrolytes.
电解质/SEI 理论计算值/V 实验值/V 测试方法 LiF 0—6.36[16] — — Li2S 0—2.01[17] — — Li3N 0—0.44[18] 0—0.9[19] Li/液体电解质/Li3N-C-PTFE 70Li2S-30P2S5 2.28—2.31[17] 0—5[20] Li/LPS/不锈钢 Li6PS5Cl 1.71—2.01[17] 0—7[21] Li/LPS/不锈钢 1.25—2.5[15] Li-In/ LPSC/LPSC-C Li10GeP2S12 1.71—2.14[17] 0—5[22] Li/LGPS/Au 1—2.7[23] Li/LGPS/LGPS-C/Pt Li7La3Zr2O12 0.05—2.91[17] 0—6[24] Li/LLZO/Au 0—4[25] Li/LLZO/LLZO-C/Pt Li1.5Al0.5Ge1.5(PO4)3 2.7—4.27[17] 0—6[26] Li/LAGP/Pt LiPON 0.68—2.63[17] 0—5.5[27] Li/LiPON/Pt 表 2 常见固态电解质、正极材料以及界面修饰层的杨氏模量
Table 2. The Young’s modulus of the conventional solid-state electrolytes, cathodes and interface modification layers.
-
[1] Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928Google Scholar
[2] Janek J, Zeier W G 2016 Nat. Energy 1 1Google Scholar
[3] Armand M, Tarascon J M 2008 Nature 451 652Google Scholar
[4] Goodenough J B 2012 J. Solid State Electrochem. 16 2019Google Scholar
[5] Soloveichik G L 2014 Nature 505 163
[6] Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167Google Scholar
[7] Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219Google Scholar
[8] López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56Google Scholar
[9] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513Google Scholar
[10] Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945Google Scholar
[11] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682Google Scholar
[12] Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778Google Scholar
[13] Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775Google Scholar
[14] Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780Google Scholar
[15] Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428Google Scholar
[16] Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016Google Scholar
[17] Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar
[18] Rabenau A 1982 Solid State Ionics 6 277Google Scholar
[19] Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534Google Scholar
[20] Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627
[21] Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008Google Scholar
[22] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682
[23] Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473Google Scholar
[24] Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342Google Scholar
[25] Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar
[26] Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276Google Scholar
[27] Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524Google Scholar
[28] Xu K 2014 Chem. Rev. 114 11503Google Scholar
[29] Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208Google Scholar
[30] Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259Google Scholar
[31] Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119Google Scholar
[32] Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707Google Scholar
[33] Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2Google Scholar
[34] Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029Google Scholar
[35] Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9Google Scholar
[36] Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016Google Scholar
[37] Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510Google Scholar
[38] Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035Google Scholar
[39] Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764Google Scholar
[40] Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91Google Scholar
[41] Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258Google Scholar
[42] Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042Google Scholar
[43] He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24Google Scholar
[44] Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572Google Scholar
[45] Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565Google Scholar
[46] Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853Google Scholar
[47] Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243Google Scholar
[48] Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90Google Scholar
[49] Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192Google Scholar
[50] Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44Google Scholar
[51] Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179Google Scholar
[52] Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454Google Scholar
[53] Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414Google Scholar
[54] Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771Google Scholar
[55] Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127Google Scholar
[56] Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939Google Scholar
[57] Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404Google Scholar
[58] Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138Google Scholar
[59] Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888Google Scholar
[60] Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883Google Scholar
[61] Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21Google Scholar
[62] Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750Google Scholar
[63] Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328Google Scholar
[64] Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar
[65] Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98Google Scholar
[66] Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1Google Scholar
[67] de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609Google Scholar
[68] Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929Google Scholar
[69] McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011Google Scholar
[70] Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071Google Scholar
[71] Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458Google Scholar
[72] Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115Google Scholar
[73] Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar
[74] Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719Google Scholar
[75] Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075Google Scholar
[76] Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665Google Scholar
[77] Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412Google Scholar
[78] Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431Google Scholar
[79] Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764Google Scholar
[80] Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842Google Scholar
[81] Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53Google Scholar
[82] Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497Google Scholar
[83] Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972Google Scholar
[84] Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar
[85] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212Google Scholar
[86] Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486Google Scholar
[87] Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610Google Scholar
[88] Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190Google Scholar
[89] Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7Google Scholar
[90] Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015Google Scholar
[91] Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261Google Scholar
[92] Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73Google Scholar
[93] Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418Google Scholar
计量
- 文章访问数: 20752
- PDF下载量: 1141
- 被引次数: 0