-
A human brain is a high-density neural network, which has~1011 neurons and~1015 synapses. Neuron as a basic information processing unit builds the biological neural network, and the realization of information transmission and integration depends on the synaptic connection between neurons. This information transfer and integration work is difficult to realize by relying on von Neumann computer, due to the computer only works according to the well-defined programs. To further simulate the imagery thinking of human brain neural network, the researchers begin with the information memory and processing mechanism of human brain neural network. A large number of microelectronic devices with human thinking characteristics are designed, such as memristor, atomic switch, phase change memory, and transistors. The oxide-based thin film transistor under the new material system is one of these devices, and has attracted the attention of researchers. The transistors working as the biological synapses, the gate electrode is regard as presynaptic input terminal, and the channel current is measured as postsynaptic output. Utilizing the proton gating behaviors, a series of synaptic behaviors, such as short-term and long-term memory, paired-pulse facilitation, and spike timing-dependent plasticity is mimicked successfully in these synaptic transistors.#br#With the progressing of science and technology, and the increasing of requirements for environmental protection, researchers pay more attention to the environmentally friendly solid electrolyte materials to fabricate oxide-based thin film synaptic transistor. Researchers have a major interest in starch, due to the low price, rich source, and excellent mechanical properties. Starch can be extracted from corn, potato, sweet potato and other starch-containing substances, and is generally insoluble in cold water, and gelatinized in boiling water. In this study, corn starch solid electrolyte is prepared on ITO glass by spin coating progress, and dried at a constant temperature at 30℃. The electrical performances of protonic/electronic hybrid IZO synaptic transistor gated by corn starch solid electrolyte are excellent, operation voltage, Ion/off ratio, field-effect mobility and subthreshold swing are 1.5 V, 1×107, 18.7 cm2·V-1·s-1 and 156.8 mV/dec., respectively. Due to the mobile proton migrating in corn starch solid electrolyte, the paired-pulse facilitation, learning and memory behaviors and high-pass filter of biological neural synaptic plasticity are realized successfully. The synaptic transistors have potential applications in the field of environment-friendly microelectronic devices to reduce the production costs. Therefore, the corn starch solid electrolyte gated proton/electron hybrid synaptic transistor as an artificial synapse can offer a suitable option to building the neural network.
-
Keywords:
- corn starch solid electrolyte /
- paired-pulse facilitation /
- synaptic transistors /
- high-pass filter
[1] Aram Z, Jafari Z, Mab J, Sprott J C, Zendehrouh S, Pham V T 2017 Commun. Nonlinear Sci. Numer. Simulat. 44 449
[2] Zhang S J, Ding D, Wei G L, Liu Y, Alsaadi F E 2017 Neurocomputing 260 257
[3] Borders W A, Akima H, Fukami S, Moriya S, Horio Y, Sato S, Ohno H 2017 Appl. Phys. Express 10 013007
[4] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams S T 2010 Nature 464 873
[5] Li Y H, Yang Y C, Gao X M, Yuan J L, Zhu G X, Zhang Z Y, Wang Y J 2016 IEEE Electron Dev. Lett. 37 1434
[6] Kim H, Park J, Kwon M W, Lee J H, Park B G 2016 IEEE Electron Dev. Lett. 37 249
[7] Yuan H, Shimotan H, Tsukazaki A, Ohtomo A 2010 J. Am. Chem. Soc. 132 6672
[8] Rocco A M, Fonseca C P D, Pereira R P 2002 Polymer 43 3601
[9] Ni'Mah Y L, Cheng M Y, Cheng J H, Rick J, Hwang B J 2015 J. Power Sources 278 375
[10] Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167
[11] Liu Y H, Zhu L Q, Shi Y, Wan Q 2014 Appl. Phys. Lett. 104 133504
[12] Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305(in Chinese)[朱德明, 门传玲, 曹敏, 吴国栋2013 62 117305]
[13] Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Lwasa Y 2009 Adv. Funct. Mater. 19 1046
[14] Lu A X, Sun J, Jiang J, Wan Q 2009 Appl. Phys. Lett. 95 222905
[15] Wu G, Feng P, Wan X, Zhu L, Shi Y, Wan Q 2016 Sci. Rep. 6 23578
[16] Wu G, Zhang J, Wan X, Yang Y, Jiang S 2014 J. Mater. Chem. C 2 6249
[17] Gomes M E, Ribeiro A S, Malafaya P B, Reis R L, Cunha A M 2001 Biomaterials 22 883
[18] Ohkita T, Lee S H 2004 J. Appl. Polym. Sci. 97 1107
[19] Finkenstadt V L, Willett J L 2004 J. Polym. Environ. 12 43
[20] Lu A X, Sun J, Jiang J, Wan Q 2010 IEEE Electron Dev. Lett. 31 1137
[21] Wu G D, Zhou J M, Zhang H L, Zhu L Q, Wan Q 2012 IEEE Electron Dev. Lett. 33 1720
[22] Stute R 1992 Starch-Starke 44 205
[23] Ramesh S, Liew C W, Arof A K 2011 J. Non-Cryst. Solids 357 3654
[24] Raeishosseini N, Lee J S 2016 ACS Appl. Mat. Interfaces 8 7326
[25] And D T, Søderman O 2002 J. Phys. Chem. B 106 11887
[26] Zhitenev N B, Sidorenko A, Tennant D M, Cirelli R A 2007 Nat. Nanotechnol. 2 237
[27] Teoh K H, Lim C S, Liew C W, Ramesh S 2015 Ionics 21 2061
[28] Liew C W, Ramesh S, Ramesh K, Arof A K 2012 J. Solid State Electrochem. 16 1869
[29] Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344
[30] Guo L Q, Wen J, Cheng G G, Yuan N Y, Ding J N 2016 Acta Phys. Sin. 65 178501 (in Chinese)[郭立强, 温娟, 程广贵, 袁宁一, 丁建宁2016 65 178501]
[31] Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese)[赵孔胜, 轩瑞杰, 韩笑, 张耕铭2012 61 197201]
-
[1] Aram Z, Jafari Z, Mab J, Sprott J C, Zendehrouh S, Pham V T 2017 Commun. Nonlinear Sci. Numer. Simulat. 44 449
[2] Zhang S J, Ding D, Wei G L, Liu Y, Alsaadi F E 2017 Neurocomputing 260 257
[3] Borders W A, Akima H, Fukami S, Moriya S, Horio Y, Sato S, Ohno H 2017 Appl. Phys. Express 10 013007
[4] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams S T 2010 Nature 464 873
[5] Li Y H, Yang Y C, Gao X M, Yuan J L, Zhu G X, Zhang Z Y, Wang Y J 2016 IEEE Electron Dev. Lett. 37 1434
[6] Kim H, Park J, Kwon M W, Lee J H, Park B G 2016 IEEE Electron Dev. Lett. 37 249
[7] Yuan H, Shimotan H, Tsukazaki A, Ohtomo A 2010 J. Am. Chem. Soc. 132 6672
[8] Rocco A M, Fonseca C P D, Pereira R P 2002 Polymer 43 3601
[9] Ni'Mah Y L, Cheng M Y, Cheng J H, Rick J, Hwang B J 2015 J. Power Sources 278 375
[10] Goodenough J B, Park K S 2013 J. Am. Chem. Soc. 135 1167
[11] Liu Y H, Zhu L Q, Shi Y, Wan Q 2014 Appl. Phys. Lett. 104 133504
[12] Zhu D M, Men C L, Cao M, Wu G D 2013 Acta Phys. Sin. 62 117305(in Chinese)[朱德明, 门传玲, 曹敏, 吴国栋2013 62 117305]
[13] Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Lwasa Y 2009 Adv. Funct. Mater. 19 1046
[14] Lu A X, Sun J, Jiang J, Wan Q 2009 Appl. Phys. Lett. 95 222905
[15] Wu G, Feng P, Wan X, Zhu L, Shi Y, Wan Q 2016 Sci. Rep. 6 23578
[16] Wu G, Zhang J, Wan X, Yang Y, Jiang S 2014 J. Mater. Chem. C 2 6249
[17] Gomes M E, Ribeiro A S, Malafaya P B, Reis R L, Cunha A M 2001 Biomaterials 22 883
[18] Ohkita T, Lee S H 2004 J. Appl. Polym. Sci. 97 1107
[19] Finkenstadt V L, Willett J L 2004 J. Polym. Environ. 12 43
[20] Lu A X, Sun J, Jiang J, Wan Q 2010 IEEE Electron Dev. Lett. 31 1137
[21] Wu G D, Zhou J M, Zhang H L, Zhu L Q, Wan Q 2012 IEEE Electron Dev. Lett. 33 1720
[22] Stute R 1992 Starch-Starke 44 205
[23] Ramesh S, Liew C W, Arof A K 2011 J. Non-Cryst. Solids 357 3654
[24] Raeishosseini N, Lee J S 2016 ACS Appl. Mat. Interfaces 8 7326
[25] And D T, Søderman O 2002 J. Phys. Chem. B 106 11887
[26] Zhitenev N B, Sidorenko A, Tennant D M, Cirelli R A 2007 Nat. Nanotechnol. 2 237
[27] Teoh K H, Lim C S, Liew C W, Ramesh S 2015 Ionics 21 2061
[28] Liew C W, Ramesh S, Ramesh K, Arof A K 2012 J. Solid State Electrochem. 16 1869
[29] Wee G, Larsson O, Srinivasan M, Berggren M, Crispin X, Mhaisalkar S 2010 Adv. Funct. Mater. 20 4344
[30] Guo L Q, Wen J, Cheng G G, Yuan N Y, Ding J N 2016 Acta Phys. Sin. 65 178501 (in Chinese)[郭立强, 温娟, 程广贵, 袁宁一, 丁建宁2016 65 178501]
[31] Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese)[赵孔胜, 轩瑞杰, 韩笑, 张耕铭2012 61 197201]
Catalog
Metrics
- Abstract views: 6598
- PDF Downloads: 284
- Cited By: 0