Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent research progress of interface for polyethylene oxide based solid state battery

Liu Yu-Long Xin Ming-Yang Cong Li-Na Xie Hai-Ming

Citation:

Recent research progress of interface for polyethylene oxide based solid state battery

Liu Yu-Long, Xin Ming-Yang, Cong Li-Na, Xie Hai-Ming
PDF
HTML
Get Citation
  • Polyethylene oxide(PEO) based solid-state batteries have high safety and high energy density, making them suitable for next-generation energy storage devices. However, their energy density reaches a limitation due to the narrow electrochemical window of PEO solid electrolyte. The electrode materials that are compatible with PEO electrolyte is less, thus handering it from being put into wide application. At the PEO/electrode interface, there are side reactions between anode/PEO and PEO cathode. Some strategies are proposed to reduce the side reactions, electrochemical performances of solid-state batteries are improved. To understand the change of interface, several advanced characterizations are employed, which can offer scientific evidence of increasing the interface stability in the future.
      Corresponding author: Cong Li-Na, congln816@nenu.edu.cn ; Xie Hai-Ming, xiehm136@nenu.edu.cn
    • Funds: Project supported by the Special Fund of Key Technology Research and Development Projects, China (Grant Nos. 20180201097GX, 20180201099GX, 20180201096GX), the Key Subject Construction of Physical Chemistry of Northeast Normal University, the R&D Program of Power Batteries with Low Temperature and High Energy, the Science and Technology Bureau of Changchun, China (Grant No. 19SS013), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21905041), the Natural Science Foundation of the Education Department of Jilin Province, China (Grant No. JJKH20190265KJ), the Special Foundation of the Industrial Technology Research and Development of Jilin Province, China (Grant No. 2019C042), and the Fundamental Research Funds for the Central Universities (Grant No. 2412020QD006)
    [1]

    Berthier C, Gorecki W, Minier M, Armand M B, Chabagno J M, Rigaud P 1983 Solid State Ionics 11 91Google Scholar

    [2]

    Gauthier M, Fauteux D, Vassort G, Bélanger A, Duval M, Ricoux P, Chabagno J M, Muller D, Rigaud P, Armand M B, Deroo D 1985 J. Electrochem. Soc. 132 1333Google Scholar

    [3]

    Armand M 1994 Solid State Ionics 69 309Google Scholar

    [4]

    Koksbang R, Olsen I I, Shackle D 1994 Solid State Ionics 69 320Google Scholar

    [5]

    Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G 2019 Chem 5 2326Google Scholar

    [6]

    Shi J, Vincent C A 1993 Solid State Ionics 60 11Google Scholar

    [7]

    Teran A A, Tang M H, Mullin S A, Balsara N P 2011 Solid State Ionics 203 18

    [8]

    Marchiori C F N, Carvalho R P, Ebadi M, Brandell D, Araujo C M 2020 Chem. Mater. 32 7237Google Scholar

    [9]

    Xue Z, He D, Xie X 2015 J. Mater. Chem. A 3 19218Google Scholar

    [10]

    Tan S J, Zeng X X, Ma Q, Wu X W, Guo Y G 2018 Electrochem. Energ. Rev. 1 113Google Scholar

    [11]

    Niitani T, Shimada M, Kawamura K, Kanamura K 2005 J. Power Sources 146 386Google Scholar

    [12]

    Tan J, Ao X, Dai A, Yuan Y, Zhuo H, Lu H, Zhuang L, Ke Y, Su C, Peng X, Tian B, Lu J 2020 Energy Storage Mater. 33 173Google Scholar

    [13]

    Liu L, Mo J, Li J, Liu J, Yan H, Lyu J, Jiang B, Chu L, Li M 2020 J. Energy Chem. 48 334Google Scholar

    [14]

    Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J-P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M 2013 Nat. Mater. 12 452Google Scholar

    [15]

    Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L 2016 Energy Storage Mater. 5 157

    [16]

    Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough J B 2019 Adv. Mater. 31 1805574Google Scholar

    [17]

    Liang W, Shao Y, Chen Y-M, Zhu Y 2018 ACS Appl. Energy Mater. 1 6064Google Scholar

    [18]

    Zaghib K, Charest P, Guerfi A, Shim J, Perrier M, Striebel K 2005 J. Power Sources 146 380Google Scholar

    [19]

    Zaghib K, Charest P, Guerfi A, Shim J, Perrier M, Striebel K 2004 J. Power Sources 134 124Google Scholar

    [20]

    Fiory F S, Croce F, D'Epifanio A, Licoccia S, Scrosati B, Traversa E 2004 J. Eur. Ceram. Soc. 24 1385Google Scholar

    [21]

    Chen R, Qu W, Guo X, Li L, Wu F 2016 Mater. Horiz. 3 487Google Scholar

    [22]

    Croce F, Scrosati B 1993 J. Power Sources 43 9Google Scholar

    [23]

    Baudry P, Lascaud S, Majastre H, Bloch D 1997 J. Power Sources 68 432Google Scholar

    [24]

    Persi L, Croce F, Scrosati B, Plichta E, Hendrickson M A 2002 J. Electrochem. Soc. 149 A212Google Scholar

    [25]

    Li Q, Itoh T, Imanishi N, Hirano A, Takeda Y, Yamamoto O 2003 Solid State Ionics 159 97Google Scholar

    [26]

    Hallinan D T, Mullin S A, Stone G M, Balsara N P 2013 J. Electrochem. Soc. 160 A464Google Scholar

    [27]

    Le Granvalet-Mancini M, Hanrath T, Teeters D 2000 Solid State Ionics 135 283Google Scholar

    [28]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Electrochem. Soc. 146 4393Google Scholar

    [29]

    Harry K J, Liao X, Parkinson D Y, Minor A M, Balsara N P 2015 J. Electrochem. Soc. 162 A2699Google Scholar

    [30]

    Maslyn J A, Loo W S, McEntush K D, Oh H J, Harry K J, Parkinson D Y, Balsara N P 2018 J. Phys. Chem. C 122 26797Google Scholar

    [31]

    Maslyn J A, Frenck L, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Energy Mater. 2 8197Google Scholar

    [32]

    Dollé M l, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. Solid-State Lett. 5 A286Google Scholar

    [33]

    Frenck L, Maslyn J A, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Mater. Interfaces 11 47878Google Scholar

    [34]

    Zhang J, Zhao N, Zhang M, Li Y, Chu P K, Guo X, Di Z, Wang X, Li H 2016 Nano Energy 28 447Google Scholar

    [35]

    Golozar M, Hovington P, Paolella A, Bessette S, Lagacé M, Bouchard P, Demers H, Gauvin R, Zaghib K 2018 Nano Lett. 18 7583Google Scholar

    [36]

    Barai P, Higa K, Srinivasan V 2017 Phys. Chem. Chem. Phys. 19 20493Google Scholar

    [37]

    Galluzzo M D, Halat D M, Loo W S, Mullin S A, Reimer J A, Balsara N P 2019 ACS Energy Lett. 4 903Google Scholar

    [38]

    Zaghib K 1998 J. Electrochem. Soc. 145 3135Google Scholar

    [39]

    Imanishi N, Ono Y, Hanai K, Uchiyama R, Liu Y, Hirano A, Takeda Y, Yamamoto O 2008 J. Power Sources 178 744

    [40]

    Kobayashi Y, Seki S, Mita Y, Ohno Y, Miyashiro H, Charest P, Guerfi A, Zaghib K 2008 J. Power Sources 185 542Google Scholar

    [41]

    Si Q, Kakubo M, Matsui M, Horiba T, Yamamoto O, Takeda Y, Seki N, Imanishi N 2014 J. Power Sources 248 1275Google Scholar

    [42]

    Xu X, Li Y, Cheng J, Hou G, Nie X, Ai Q, Dai L, Feng J, Ci L 2020 J. Energy Chem. 41 73Google Scholar

    [43]

    Appetecchi G B, Croce F, Dautzenberg G, Mastragostino M, Ronci F, Scrosati B, Soavi F, Zanelli A, Alessandrini F, Prosini P P 1998 J. Electrochem. Soc. 145 4126Google Scholar

    [44]

    Appetecchi G B, Croce F, Mastragostino M, Scrosati B, Soavi F, Zanelli A 1998 J. Electrochem. Soc. 145 4133Google Scholar

    [45]

    Bac A, Ciosek M, Bukat M, Siekierski M, Wieczorek W 2006 J. Power Sources 159 438Google Scholar

    [46]

    Delaporte N, Guerfi A, Demers H, Lorrmann H, Paolella A, Zaghib K 2019 ChemistryOpen 8 192Google Scholar

    [47]

    Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J 2016 JACS 138 15825Google Scholar

    [48]

    Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q 2017 PNAS 114 11069Google Scholar

    [49]

    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [50]

    Pawłowska M, Żukowska G Z, Kalita M, Sołgała A, Parzuchowski P, Siekierski M 2007 J. Power Sources 173 755Google Scholar

    [51]

    Chintapalli M, Chen X C, Thelen J L, Teran A A, Wang X, Garetz B A, Balsara N P 2014 Macromolecules 47 5424Google Scholar

    [52]

    Yuan R, Teran A A, Gurevitch I, Mullin S A, Wanakule N S, Balsara N P 2013 Macromolecules 46 914Google Scholar

    [53]

    Fu C, Venturi V, Kim J, Ahmad Z, Ells A W, Viswanathan V, Helms B A 2020 Nat. Mater. 19 758Google Scholar

    [54]

    Niitani T, Shimada M, Kawamura K, Dokko K, Rho Y H, Kanamura K 2005 Electrochem. Solid-State Lett. 8 A385Google Scholar

    [55]

    Ismail I, Noda A, Nishimoto A, Watanabe M 2001 Electrochim. Acta 46 1595Google Scholar

    [56]

    Sun B, Xu C, Mindemark J, Gustafsson T, Edström K, Brandell D 2015 J. Mater. Chem. A 3 13994Google Scholar

    [57]

    Xu C, Sun B, Gustafsson T, Edström K, Brandell D, Hahlin M 2014 J. Mater. Chem. A 2 7256Google Scholar

    [58]

    Rosso M, Gobron T, Brissot C, Chazalviel J N, Lascaud S 2001 J. Power Sources 97 804

    [59]

    Dolle M, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochemical and Solid State Letters 5 A286

    [60]

    Hovington P, Lagace M, Guerfi A, Bouchard P, Mauger A, Julien C M, Armand M, Zaghib K 2015 Nano Lett. 15 2671Google Scholar

    [61]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [62]

    Choi J W, Aurbach D 2016 Nat. Rev. Mater. 1 16013

    [63]

    Boaretto N, Meabe L, Martinez-Ibañez M, Armand M, Zhang H 2020 J. Electrochem. Soc. 167 070524Google Scholar

    [64]

    Myung S, Maglia F, Park K J, Yoon C S, Lamp P, Kim S, Sun Y 2017 ACS Energy Lett. 2 196Google Scholar

    [65]

    Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F 2017 Appl. Energy 195 586Google Scholar

    [66]

    Manthiram A, Knight J C, Myung S, Oh S M, Sun Y 2016 Adv. Energy Mater. 6 1501010Google Scholar

    [67]

    Judez X, Eshetu G G, Li C, Rodriguezmartinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [68]

    Zhang H, Zhang J, Ma J, Xu G, Dong T, Cui G 2019 Electrochem. Energy Rev. 2 128Google Scholar

    [69]

    Nie K, Wang X, Qiu J, Wang Y, Yang Q, Xu J, Yu X, Li H, Huang X, Chen L 2020 ACS Energy Lett. 5 826Google Scholar

    [70]

    Li Z, Li A, Zhang H, Lin R, Jin T, Cheng Q, Xiao X, Lee W, Ge M, Zhang H 2020 Nano Energy 72 104655Google Scholar

    [71]

    Liang J, Sun Y, Zhao Y, Sun Q, Luo J, Zhao F, Lin X, Li X, Li R, Zhang L, Lu S, Huang H, Sun X 2020 J. Mater. Chem. A 8 2769Google Scholar

    [72]

    Ma J, Liu Z, Chen B, Wang L, Yue L, Liu H, Zhang J, Liu Z, Cui G 2017 J. Electrochem. Soc. 164 A3454Google Scholar

    [73]

    Miyashiro H, Kobayashi Y, Seki S, Mita Y, Usami A, Nakayama M, Wakihara M 2005 Chem. Mater. 17 5603Google Scholar

    [74]

    Seki S, Kobayashi Y, Miyashiro H, Mita Y, Iwahori T 2005 Chem. Mater. 17 2041Google Scholar

    [75]

    Yang Q, Huang J, Li Y, Wang Y, Qiu J, Zhang J, Yu H, Yu X, Li H, Chen L 2018 J. Power Sources 388 65Google Scholar

    [76]

    Morimoto H, Awano H, Terashima J, Shindo Y, Nakanishi S, Ito N, Ishikawa K, Tobishima S I 2013 J. Power Sources 240 636Google Scholar

    [77]

    Shim J, Han J, Lee J, Lee S 2016 ACS Appl. Mater. Interfaces 8 12205Google Scholar

    [78]

    Fu C, Lou S, Xu X, Cui C, Li C, Zuo P, Ma Y, Yin G, Gao Y 2020 Chem. Eng. J. 392 123665Google Scholar

    [79]

    Wang Y, Liu B, Zhou G, Nie K, Zhang J, Yu X, Li H 2019 Chin. Phys. B 28 068202Google Scholar

    [80]

    Zhao Y, Zheng K, Sun X 2018 Joule 2 2583Google Scholar

    [81]

    Liang J, Hwang S, Li S, Luo J, Sun Y, Zhao Y, Sun Q, Li W, Li M, Banis M N, Li X, Li R, Zhang L, Zhao S, Lu S, Huang H, Su D, Sun X 2020 Nano Energy 78 105107Google Scholar

    [82]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [83]

    Zhu Y, He X, Mo Y 2016 J. Mater. Chem. A 4 3253Google Scholar

    [84]

    Meng X, Liu J, Li X, Banis M N, Yang J, Li R, Sun X 2013 RSC Adv. 3 7285Google Scholar

    [85]

    Liu J, Banis M N, Li X, Lushington A, Cai M, Li R, Sham T K, Sun X 2013 J. Phys. Chem. C 117 20260Google Scholar

    [86]

    Wang B, Zhao Y, Banis M N, Sun Q, Adair K R, Li R, Sham T K, Sun X 2018 ACS Appl. Mater. Interfaces 10 1654Google Scholar

    [87]

    Wang B, Liu J, Norouzi Banis M, Sun Q, Zhao Y, Li R, Sham T K, Sun X 2017 ACS Appl. Mater. Interfaces 9 31786Google Scholar

    [88]

    Wang B, Liu J, Sun Q, Li R, Sham T K, Sun X 2014 Nanotechnology 25 504007

    [89]

    Liu Z, Hu P, Ma J, Qin B, Zhang Z, Mou C, Yao Y, Cui G 2017 Electrochim. Acta 236 221Google Scholar

    [90]

    Xia Y, Fujieda T, Tatsumi K, Prosini P P, Sakai T 2001 J. Power Sources 92 234Google Scholar

    [91]

    Qiu J, Yang L, Sun G, Yu X, Li H, Chen L 2020 Chem. Commun. 56 5633Google Scholar

    [92]

    Lu J, Zhou J, Chen R, Fang F, Nie K, Qi W, Zhang J N, Yang R, Yu X, Li H, Chen L, Huang X 2020 Energy Storage Mater. 32 191Google Scholar

    [93]

    Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough J B 2019 Advanced Materials 31 1805574

    [94]

    Li W, Lucht B L 2007 J. Power Sources 168 258Google Scholar

    [95]

    Smart M C, Lucht B L, Ratnakumar B V 2008 J. Electrochem. Soc. 155 A557Google Scholar

    [96]

    Qiu J, Liu X, Chen R, Li Q, Wang Y, Chen P, Gan L, Lee S J, Nordlund D, Liu Y, Yu X, Bai X, Li H, Chen L 2020 Adv. Funct. Mater. 30 1909392Google Scholar

    [97]

    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S, Affinito J 2009 J. Electrochem. Soc. 156 A694Google Scholar

    [98]

    Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y M, Cui Y 2015 Nat. Commun. 6 7436Google Scholar

    [99]

    Zhuang G V, Xu K, Jow T R, Ross P N 2004 Electrochem. Solid-State Lett. 7 A224Google Scholar

    [100]

    Zheng J, Engelhard M H, Mei D, Jiao S, Polzin B J, Zhang J G, Xu W 2017 Nat. Energy 2 17012Google Scholar

    [101]

    Yang L, Furczon M M, Xiao A, Lucht B L, Zhang Z, Abraham D P 2010 J. Power Sources 195 1698Google Scholar

    [102]

    Li J, Li W, You Y, Manthiram A 2018 Adv. Energy Mater. 8 1801957Google Scholar

    [103]

    Choudhury S, Stalin S, Deng Y, Archer L A 2018 Chem. Mater. 30 5996Google Scholar

    [104]

    Zhao Q, Chen P, Li S, Liu X, Archer L A 2019 J. Mater. Chem. A 7 7823Google Scholar

    [105]

    Wang C, Wang T, Wang L, Hu Z, Cui Z, Li J, Dong S, Zhou X, Cui G 2019 Adv. Sci. 6 1901036Google Scholar

    [106]

    Besli M M, Xia S, Kuppan S, Huang Y, Metzger M, Shukla A K, Schneider G, Hellstrom S, Christensen J, Doeff M M 2019 Chem. Mater. 31 491Google Scholar

  • 图 1  PEO基聚合物电解质固态电池发展概况.

    Figure 1.  Overview of the PEO polymer based solid-state battery.

    图 2  PEO基固态电解质与负极的反应 (a) 锂的不均匀沉积形成的锂枝晶[29]; (b)锂金属沉积的原位电镜扫描图片[32]; (c) 锂金属沉积的循环伏安曲线[34]

    Figure 2.  Anode side reaction in PEO based solid state battery: (a) Lithium dendrite formation during deposition[29]; (b) in-situ SEM images of lithium deposition[32]; (c) C-V curves of lithium deposition/dissolution[34].

    图 3  负极界面改善策略 (a) 锂金属表面修饰[47]; (b) 有机-无机复合电解质[49]; (c)嵌段聚合物[54]

    Figure 3.  Strategies to improve the anode stability[47]: (a) Surface modification of Li metal; (b) organic-inorganic composite electrolyte[49]; (c) triblock co-polymer[54].

    图 4  负极界面表征 (a)常规XPS[56]; (b)原位SEM[35]; (c)同步辐射CT[61]

    Figure 4.  Advanced characterization of anode interface: (a)Lab-XPS[56]; (b)in-situ SEM[35]; (c) synchrotron X-ray microtomography[61].

    图 5  传统电池及全固态锂电池体系质量能量密度和体积能量密度预测与比较图[67]

    Figure 5.  Prediction of volumetric and gravimetric energy density for traditional battery and all solid-state battery.

    图 6  正极表面改性 (a) 固相法制备的5 wt.% c-LATP包覆的LiCoO2的SEM图片[76]; (b) 前驱体包覆方法获得的Li1.3Al0.3Ti1.7(PO4)3改性LiCoO2的SEM图片[77]; (c) 溶液方法制备的0.5 wt% LATP均匀包覆的LiCoO2的SEM图片[75]; (d)在2.8−4.5 V截止电压下, LATP包覆及未包覆改性的NCM622在1 C倍率下的循环曲线 (1 C = 190 mA/g)[79]; (e) 高温煅烧过程中LATP包覆改性及未包覆NCM622的表面演化示意图[79]; (f) 定量分析LATP包覆改性及未包覆改性NCM622的XPS 的O1s和P2p[79]

    Figure 6.  Cathode interface engineering: (a) SEM image of 5 wt.% c-LATP coated LiCoO2[76]; (b) SEM image of LATP precursor coated LiCoO2[77]; (c) SEM image of 0.5 wt.% LATP coated LiCoO2 by solution method[75]; (d) charge discharge curve of NMC622 at 1 C rate between 2.8−4.5 V (1 C = 190 mA/g)[79]; (e) schematic diagram of LATP coated and un-coated NMC during high temperature sintering[79]; (f) XPS O1s and P2p of LATP coated and un-coated NMC[79].

    图 7  (a) 示意图说明ALD/MLD技术解决固态电池界面问题[80]; (b) ALD技术制备的LNO包覆NCM811的TEM图[81]; (c) 示意图说明包覆改性前后的NCM811正极在长循环后层状结构降解及晶格氧的损失情况[81]; (d) 对比改性前后NCM811在60 ℃, 0.2 C倍率下循环性能曲线[81]; (e) LTO包覆LiCoO2颗粒和LTO包覆LiCoO2正极(极片包括活性材料, 导电碳和粘结剂)的示意图[71]; (f) 示意图说明电沉积方法制备PAN包覆NCM523[91]

    Figure 7.  (a) Schematic diagram of ALD/MLD in stabilizing cathode interface[80]; (b) TEM image of ALD LNO coated NCM811[81]; (c) illustration of structure degradation and oxygen release of coated and uncoated NCM811[81]; (d) cycling performance of coated and uncoated NCM811 NCM811 at 60 ℃, 0.2 C rate[81]; (e) illustration of ALD LTO coated LiCoO2 particle and LTO coated LiCoO2 electrode[71]; (f) illustration of PAN coated NCM 523 by electrodeposition[91].

    图 8  (a) DSM-SPE电解质膜的结构示意图[105]; (b) DSM-SPE电解质膜循环10次后, XPS测试LiCoO2正极表面F1s和B1s谱图[105]; (c) SPE, DSM-SPE, 和PEO-LiTFSI电解质组装的LiCoO2/Li固态电池在2.8−4.3 V电压范围, 60 ℃, 0.1 C倍率下循环性能曲线[105]; (d) 原位聚合形成CEI膜及组装固态电池的示意图[92]; (e) LiCoO2|PEO-SPE|Li和CEI膜改性的LiCoO2|PEO-SPE|Li在不同循环圈数放电态的EIS曲线, 及等效电路图和相应的拟合结果对比图[92]; (f) LiCoO2|PEO-SPE|Li和CEI膜改性的LiCoO2|PEO-SPE|Li在3.0−4.2 V电压范围, 0.5 C倍率下的循环性能曲线[92]

    Figure 8.  (a) Demonstration of DSM-SPE solid electrolyte based solid battery[105];(b) F1s and B1s XPS spectra of LiCoO2 electrode after 10 cycles[105]; (c) cycling performance of LiCoO2/Li cell with SPE, DSM-SPE, and PEO-LiTFSI electrolyte at 60 ℃, 0.1 C rate between 2.8−4.3 V[105]; (d) illustration of in- situ CEI film formation and solid state battery assembly[92]; (e) EIS spectra of LiCoO2|PEO-SPE|Li and CEI modified LiCoO2|PEO-SPE|Li at different cycles[92]; (f) cycling performance of LiCoO2|PEO-SPE|Li and CEI modified LiCoO2|PEO-SPE|Li at 0.5 C rate between 3.0−4.2 V[92].

    图 9  (a) LATP包覆层的TEM和SAED图[77]; (b) LATP包覆层的STEM和EDS图[77]; (c) Mg掺杂的LiCoO2的放大STEM和EELS图[77]; (d) Mg掺杂的LATP- LiCoO2 和LATP- LiCoO2的C-AFM图[77]; (e) 完全充电态的NCA颗粒在21周循环后的2D-FF-TXM[106]; (f) 完全电态的NCA颗粒在21周循环后的3D-FF-TXM[106]; (g) 未进行循环及循环后的NCA电极在高分辨率下的BIB-SEM图[106]

    Figure 9.  (a) TEM and SAED of LATP coating layer[77]; (b) STEM and EDS of LATP coating layer[77]; (c) STEM and EELS of Mg doped LiCoO2[77]; (d) C-AFM of LATP coated Mg-LiCoO2 and LATP- LiCoO2[77]; (e) 2D-FF-TXM of NCA particle after 21 cycle[106]; (f) 3D-FF-TXM of NCA particle after 21 cycle[106]; (g) BIB-SEM of NCA electrode before and after cycling[106].

    Baidu
  • [1]

    Berthier C, Gorecki W, Minier M, Armand M B, Chabagno J M, Rigaud P 1983 Solid State Ionics 11 91Google Scholar

    [2]

    Gauthier M, Fauteux D, Vassort G, Bélanger A, Duval M, Ricoux P, Chabagno J M, Muller D, Rigaud P, Armand M B, Deroo D 1985 J. Electrochem. Soc. 132 1333Google Scholar

    [3]

    Armand M 1994 Solid State Ionics 69 309Google Scholar

    [4]

    Koksbang R, Olsen I I, Shackle D 1994 Solid State Ionics 69 320Google Scholar

    [5]

    Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G 2019 Chem 5 2326Google Scholar

    [6]

    Shi J, Vincent C A 1993 Solid State Ionics 60 11Google Scholar

    [7]

    Teran A A, Tang M H, Mullin S A, Balsara N P 2011 Solid State Ionics 203 18

    [8]

    Marchiori C F N, Carvalho R P, Ebadi M, Brandell D, Araujo C M 2020 Chem. Mater. 32 7237Google Scholar

    [9]

    Xue Z, He D, Xie X 2015 J. Mater. Chem. A 3 19218Google Scholar

    [10]

    Tan S J, Zeng X X, Ma Q, Wu X W, Guo Y G 2018 Electrochem. Energ. Rev. 1 113Google Scholar

    [11]

    Niitani T, Shimada M, Kawamura K, Kanamura K 2005 J. Power Sources 146 386Google Scholar

    [12]

    Tan J, Ao X, Dai A, Yuan Y, Zhuo H, Lu H, Zhuang L, Ke Y, Su C, Peng X, Tian B, Lu J 2020 Energy Storage Mater. 33 173Google Scholar

    [13]

    Liu L, Mo J, Li J, Liu J, Yan H, Lyu J, Jiang B, Chu L, Li M 2020 J. Energy Chem. 48 334Google Scholar

    [14]

    Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J-P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M 2013 Nat. Mater. 12 452Google Scholar

    [15]

    Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L 2016 Energy Storage Mater. 5 157

    [16]

    Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough J B 2019 Adv. Mater. 31 1805574Google Scholar

    [17]

    Liang W, Shao Y, Chen Y-M, Zhu Y 2018 ACS Appl. Energy Mater. 1 6064Google Scholar

    [18]

    Zaghib K, Charest P, Guerfi A, Shim J, Perrier M, Striebel K 2005 J. Power Sources 146 380Google Scholar

    [19]

    Zaghib K, Charest P, Guerfi A, Shim J, Perrier M, Striebel K 2004 J. Power Sources 134 124Google Scholar

    [20]

    Fiory F S, Croce F, D'Epifanio A, Licoccia S, Scrosati B, Traversa E 2004 J. Eur. Ceram. Soc. 24 1385Google Scholar

    [21]

    Chen R, Qu W, Guo X, Li L, Wu F 2016 Mater. Horiz. 3 487Google Scholar

    [22]

    Croce F, Scrosati B 1993 J. Power Sources 43 9Google Scholar

    [23]

    Baudry P, Lascaud S, Majastre H, Bloch D 1997 J. Power Sources 68 432Google Scholar

    [24]

    Persi L, Croce F, Scrosati B, Plichta E, Hendrickson M A 2002 J. Electrochem. Soc. 149 A212Google Scholar

    [25]

    Li Q, Itoh T, Imanishi N, Hirano A, Takeda Y, Yamamoto O 2003 Solid State Ionics 159 97Google Scholar

    [26]

    Hallinan D T, Mullin S A, Stone G M, Balsara N P 2013 J. Electrochem. Soc. 160 A464Google Scholar

    [27]

    Le Granvalet-Mancini M, Hanrath T, Teeters D 2000 Solid State Ionics 135 283Google Scholar

    [28]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Electrochem. Soc. 146 4393Google Scholar

    [29]

    Harry K J, Liao X, Parkinson D Y, Minor A M, Balsara N P 2015 J. Electrochem. Soc. 162 A2699Google Scholar

    [30]

    Maslyn J A, Loo W S, McEntush K D, Oh H J, Harry K J, Parkinson D Y, Balsara N P 2018 J. Phys. Chem. C 122 26797Google Scholar

    [31]

    Maslyn J A, Frenck L, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Energy Mater. 2 8197Google Scholar

    [32]

    Dollé M l, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. Solid-State Lett. 5 A286Google Scholar

    [33]

    Frenck L, Maslyn J A, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Mater. Interfaces 11 47878Google Scholar

    [34]

    Zhang J, Zhao N, Zhang M, Li Y, Chu P K, Guo X, Di Z, Wang X, Li H 2016 Nano Energy 28 447Google Scholar

    [35]

    Golozar M, Hovington P, Paolella A, Bessette S, Lagacé M, Bouchard P, Demers H, Gauvin R, Zaghib K 2018 Nano Lett. 18 7583Google Scholar

    [36]

    Barai P, Higa K, Srinivasan V 2017 Phys. Chem. Chem. Phys. 19 20493Google Scholar

    [37]

    Galluzzo M D, Halat D M, Loo W S, Mullin S A, Reimer J A, Balsara N P 2019 ACS Energy Lett. 4 903Google Scholar

    [38]

    Zaghib K 1998 J. Electrochem. Soc. 145 3135Google Scholar

    [39]

    Imanishi N, Ono Y, Hanai K, Uchiyama R, Liu Y, Hirano A, Takeda Y, Yamamoto O 2008 J. Power Sources 178 744

    [40]

    Kobayashi Y, Seki S, Mita Y, Ohno Y, Miyashiro H, Charest P, Guerfi A, Zaghib K 2008 J. Power Sources 185 542Google Scholar

    [41]

    Si Q, Kakubo M, Matsui M, Horiba T, Yamamoto O, Takeda Y, Seki N, Imanishi N 2014 J. Power Sources 248 1275Google Scholar

    [42]

    Xu X, Li Y, Cheng J, Hou G, Nie X, Ai Q, Dai L, Feng J, Ci L 2020 J. Energy Chem. 41 73Google Scholar

    [43]

    Appetecchi G B, Croce F, Dautzenberg G, Mastragostino M, Ronci F, Scrosati B, Soavi F, Zanelli A, Alessandrini F, Prosini P P 1998 J. Electrochem. Soc. 145 4126Google Scholar

    [44]

    Appetecchi G B, Croce F, Mastragostino M, Scrosati B, Soavi F, Zanelli A 1998 J. Electrochem. Soc. 145 4133Google Scholar

    [45]

    Bac A, Ciosek M, Bukat M, Siekierski M, Wieczorek W 2006 J. Power Sources 159 438Google Scholar

    [46]

    Delaporte N, Guerfi A, Demers H, Lorrmann H, Paolella A, Zaghib K 2019 ChemistryOpen 8 192Google Scholar

    [47]

    Zeng X X, Yin Y X, Li N W, Du W C, Guo Y G, Wan L J 2016 JACS 138 15825Google Scholar

    [48]

    Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q 2017 PNAS 114 11069Google Scholar

    [49]

    Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X 2019 Adv. Energy Mater. 9 1804004Google Scholar

    [50]

    Pawłowska M, Żukowska G Z, Kalita M, Sołgała A, Parzuchowski P, Siekierski M 2007 J. Power Sources 173 755Google Scholar

    [51]

    Chintapalli M, Chen X C, Thelen J L, Teran A A, Wang X, Garetz B A, Balsara N P 2014 Macromolecules 47 5424Google Scholar

    [52]

    Yuan R, Teran A A, Gurevitch I, Mullin S A, Wanakule N S, Balsara N P 2013 Macromolecules 46 914Google Scholar

    [53]

    Fu C, Venturi V, Kim J, Ahmad Z, Ells A W, Viswanathan V, Helms B A 2020 Nat. Mater. 19 758Google Scholar

    [54]

    Niitani T, Shimada M, Kawamura K, Dokko K, Rho Y H, Kanamura K 2005 Electrochem. Solid-State Lett. 8 A385Google Scholar

    [55]

    Ismail I, Noda A, Nishimoto A, Watanabe M 2001 Electrochim. Acta 46 1595Google Scholar

    [56]

    Sun B, Xu C, Mindemark J, Gustafsson T, Edström K, Brandell D 2015 J. Mater. Chem. A 3 13994Google Scholar

    [57]

    Xu C, Sun B, Gustafsson T, Edström K, Brandell D, Hahlin M 2014 J. Mater. Chem. A 2 7256Google Scholar

    [58]

    Rosso M, Gobron T, Brissot C, Chazalviel J N, Lascaud S 2001 J. Power Sources 97 804

    [59]

    Dolle M, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochemical and Solid State Letters 5 A286

    [60]

    Hovington P, Lagace M, Guerfi A, Bouchard P, Mauger A, Julien C M, Armand M, Zaghib K 2015 Nano Lett. 15 2671Google Scholar

    [61]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [62]

    Choi J W, Aurbach D 2016 Nat. Rev. Mater. 1 16013

    [63]

    Boaretto N, Meabe L, Martinez-Ibañez M, Armand M, Zhang H 2020 J. Electrochem. Soc. 167 070524Google Scholar

    [64]

    Myung S, Maglia F, Park K J, Yoon C S, Lamp P, Kim S, Sun Y 2017 ACS Energy Lett. 2 196Google Scholar

    [65]

    Ding Y, Mu D, Wu B, Wang R, Zhao Z, Wu F 2017 Appl. Energy 195 586Google Scholar

    [66]

    Manthiram A, Knight J C, Myung S, Oh S M, Sun Y 2016 Adv. Energy Mater. 6 1501010Google Scholar

    [67]

    Judez X, Eshetu G G, Li C, Rodriguezmartinez L M, Zhang H, Armand M 2018 Joule 2 2208Google Scholar

    [68]

    Zhang H, Zhang J, Ma J, Xu G, Dong T, Cui G 2019 Electrochem. Energy Rev. 2 128Google Scholar

    [69]

    Nie K, Wang X, Qiu J, Wang Y, Yang Q, Xu J, Yu X, Li H, Huang X, Chen L 2020 ACS Energy Lett. 5 826Google Scholar

    [70]

    Li Z, Li A, Zhang H, Lin R, Jin T, Cheng Q, Xiao X, Lee W, Ge M, Zhang H 2020 Nano Energy 72 104655Google Scholar

    [71]

    Liang J, Sun Y, Zhao Y, Sun Q, Luo J, Zhao F, Lin X, Li X, Li R, Zhang L, Lu S, Huang H, Sun X 2020 J. Mater. Chem. A 8 2769Google Scholar

    [72]

    Ma J, Liu Z, Chen B, Wang L, Yue L, Liu H, Zhang J, Liu Z, Cui G 2017 J. Electrochem. Soc. 164 A3454Google Scholar

    [73]

    Miyashiro H, Kobayashi Y, Seki S, Mita Y, Usami A, Nakayama M, Wakihara M 2005 Chem. Mater. 17 5603Google Scholar

    [74]

    Seki S, Kobayashi Y, Miyashiro H, Mita Y, Iwahori T 2005 Chem. Mater. 17 2041Google Scholar

    [75]

    Yang Q, Huang J, Li Y, Wang Y, Qiu J, Zhang J, Yu H, Yu X, Li H, Chen L 2018 J. Power Sources 388 65Google Scholar

    [76]

    Morimoto H, Awano H, Terashima J, Shindo Y, Nakanishi S, Ito N, Ishikawa K, Tobishima S I 2013 J. Power Sources 240 636Google Scholar

    [77]

    Shim J, Han J, Lee J, Lee S 2016 ACS Appl. Mater. Interfaces 8 12205Google Scholar

    [78]

    Fu C, Lou S, Xu X, Cui C, Li C, Zuo P, Ma Y, Yin G, Gao Y 2020 Chem. Eng. J. 392 123665Google Scholar

    [79]

    Wang Y, Liu B, Zhou G, Nie K, Zhang J, Yu X, Li H 2019 Chin. Phys. B 28 068202Google Scholar

    [80]

    Zhao Y, Zheng K, Sun X 2018 Joule 2 2583Google Scholar

    [81]

    Liang J, Hwang S, Li S, Luo J, Sun Y, Zhao Y, Sun Q, Li W, Li M, Banis M N, Li X, Li R, Zhang L, Zhao S, Lu S, Huang H, Su D, Sun X 2020 Nano Energy 78 105107Google Scholar

    [82]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685Google Scholar

    [83]

    Zhu Y, He X, Mo Y 2016 J. Mater. Chem. A 4 3253Google Scholar

    [84]

    Meng X, Liu J, Li X, Banis M N, Yang J, Li R, Sun X 2013 RSC Adv. 3 7285Google Scholar

    [85]

    Liu J, Banis M N, Li X, Lushington A, Cai M, Li R, Sham T K, Sun X 2013 J. Phys. Chem. C 117 20260Google Scholar

    [86]

    Wang B, Zhao Y, Banis M N, Sun Q, Adair K R, Li R, Sham T K, Sun X 2018 ACS Appl. Mater. Interfaces 10 1654Google Scholar

    [87]

    Wang B, Liu J, Norouzi Banis M, Sun Q, Zhao Y, Li R, Sham T K, Sun X 2017 ACS Appl. Mater. Interfaces 9 31786Google Scholar

    [88]

    Wang B, Liu J, Sun Q, Li R, Sham T K, Sun X 2014 Nanotechnology 25 504007

    [89]

    Liu Z, Hu P, Ma J, Qin B, Zhang Z, Mou C, Yao Y, Cui G 2017 Electrochim. Acta 236 221Google Scholar

    [90]

    Xia Y, Fujieda T, Tatsumi K, Prosini P P, Sakai T 2001 J. Power Sources 92 234Google Scholar

    [91]

    Qiu J, Yang L, Sun G, Yu X, Li H, Chen L 2020 Chem. Commun. 56 5633Google Scholar

    [92]

    Lu J, Zhou J, Chen R, Fang F, Nie K, Qi W, Zhang J N, Yang R, Yu X, Li H, Chen L, Huang X 2020 Energy Storage Mater. 32 191Google Scholar

    [93]

    Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough J B 2019 Advanced Materials 31 1805574

    [94]

    Li W, Lucht B L 2007 J. Power Sources 168 258Google Scholar

    [95]

    Smart M C, Lucht B L, Ratnakumar B V 2008 J. Electrochem. Soc. 155 A557Google Scholar

    [96]

    Qiu J, Liu X, Chen R, Li Q, Wang Y, Chen P, Gan L, Lee S J, Nordlund D, Liu Y, Yu X, Bai X, Li H, Chen L 2020 Adv. Funct. Mater. 30 1909392Google Scholar

    [97]

    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley C S, Affinito J 2009 J. Electrochem. Soc. 156 A694Google Scholar

    [98]

    Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y M, Cui Y 2015 Nat. Commun. 6 7436Google Scholar

    [99]

    Zhuang G V, Xu K, Jow T R, Ross P N 2004 Electrochem. Solid-State Lett. 7 A224Google Scholar

    [100]

    Zheng J, Engelhard M H, Mei D, Jiao S, Polzin B J, Zhang J G, Xu W 2017 Nat. Energy 2 17012Google Scholar

    [101]

    Yang L, Furczon M M, Xiao A, Lucht B L, Zhang Z, Abraham D P 2010 J. Power Sources 195 1698Google Scholar

    [102]

    Li J, Li W, You Y, Manthiram A 2018 Adv. Energy Mater. 8 1801957Google Scholar

    [103]

    Choudhury S, Stalin S, Deng Y, Archer L A 2018 Chem. Mater. 30 5996Google Scholar

    [104]

    Zhao Q, Chen P, Li S, Liu X, Archer L A 2019 J. Mater. Chem. A 7 7823Google Scholar

    [105]

    Wang C, Wang T, Wang L, Hu Z, Cui Z, Li J, Dong S, Zhou X, Cui G 2019 Adv. Sci. 6 1901036Google Scholar

    [106]

    Besli M M, Xia S, Kuppan S, Huang Y, Metzger M, Shukla A K, Schneider G, Hellstrom S, Christensen J, Doeff M M 2019 Chem. Mater. 31 491Google Scholar

  • [1] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [2] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [3] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [4] You Yi-Wei, Cui Jian-Wen, Zhang Xiao-Feng, Zheng Feng, Wu Shun-Qing, Zhu Zi-Zhong. Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Acta Physica Sinica, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [5] Zhou Yi-Fan, Yang Mu-Zi, She Feng-Quan, Gong Li, Zhang Xiao-Qi, Chen Jian, Song Shu-Qin, Xie Fang-Yan. Application of X-ray photoelectron spectroscopy to study interfaces for solid-state lithium ion battery. Acta Physica Sinica, 2021, 70(17): 178801. doi: 10.7498/aps.70.20210180
    [6] Lu Jing-Yu, Ke Cheng-Zhi, Gong Zheng-Liang, Li De-Ping, Ci Li-Jie, Zhang Li, Zhang Qiao-Bao. Application of in-situ characterization techniques in all-solid-state lithium batteries. Acta Physica Sinica, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [7] . Acta Physica Sinica, 2020, 69(22): 220101. doi: 10.7498/aps.69.220101
    [8] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [9] Gong Yue, Gu Lin. Structural evolution and matter transportation of the interface in all-solid-state battery. Acta Physica Sinica, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [10] Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng. Stability of interphase between solid state electrolyte and electrode. Acta Physica Sinica, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [11] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [12] Zhao Ning, Mu Shuang, Guo Xiang-Xin. Physical issues in solid garnet batteries. Acta Physica Sinica, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [13] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [14] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [15] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [16] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [17] Liu Xiang, Xie Kai, Zheng Chun-Man, Wang Jun. Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres. Acta Physica Sinica, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [18] Kan Peng-Zhi, Zhao Su-Ling, Xu Zheng, Kong Chao, Wang Da-Wei, Yan Yue. The applications of ZnO nanorods in poly [2-methoxy-5-(2-ethyl-hexyloxy)-1, 4-phenylene vinylene]solid state cathodoluminescence device. Acta Physica Sinica, 2010, 59(1): 616-619. doi: 10.7498/aps.59.616
    [19] Kong Chao, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Huang Jin-Ying, Yan Guang, Li Jun-Ming. Solid state cathodoluminescence of poly (2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene in devices with Si3N4 as the electronic accelerating layer. Acta Physica Sinica, 2008, 57(12): 7891-7895. doi: 10.7498/aps.57.7891
    [20] Wu Wei-Cai, Zhou Yin-Hua, Wen Shan-Peng, Han Liang, Tian Wen-Jing. Effect of solvent on the performance of poly(2-methoxy-5-(2-ethyl-hexyloxy)-p-phenylene vinylene): N, N′-bis(1-ethylpropyl)-3,4,9,10-perylene bis(tetracarboxyl diimide) solar cells. Acta Physica Sinica, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
Metrics
  • Abstract views:  12620
  • PDF Downloads:  548
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2020
  • Accepted Date:  14 October 2020
  • Available Online:  20 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回
Baidu
map