搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏振调制扫描光学显微镜方法

张洋 张志豪 王宇剑 薛晓兰 陈令修 石礼伟

引用本文:
Citation:

偏振调制扫描光学显微镜方法

张洋, 张志豪, 王宇剑, 薛晓兰, 陈令修, 石礼伟

Polarization modulation scanning optical microscopy method

Zhang Yang, Zhang Zhi-Hao, Wang Yu-Jian, Xue Xiao-Lan, Chen Ling-Xiu, Shi Li-Wei
PDF
HTML
导出引用
  • 基于反射差分谱原理搭建了适用于二维材料和微纳器件的偏振调制扫描光学显微镜系统, 可以实现对于材料或者器件的微米级区域进行反射差分显微成像的研究. 通过研究两种典型的二维层状材料MoS2和ReSe2的反射差分显微成像, 发现相比于传统的反射显微镜, 我们搭建的偏振调制扫描光学显微镜对于二维材料的层数特征更敏感, 且可以用来表征二维材料的平面光学各向异性. 相关研究有助于更进一步理解层状二维材料的层数特征和各向异性性质.
    Since the discovery of monolayer graphene, the novel physical properties of two-dimensional (2D) materials, particularly those with fewer layers that often exhibit unique properties different from bulk materials, have received significant attention. Therefore, accurately determining the layer number or obtaining the microscopic surface morphology is crucial in the laboratory fabrication and during device manufacturing. However, traditional detection methods have numerous drawbacks. There is an urgent need for a convenient, accurate, and non-destructive scientific method to characterize the layer number and surface microstructure of 2D materials. By combining the experimental setup of laser scanning photocurrent spectroscopy, we develop a polarization-modulated scanning optical microscope based on the principle of reflectance difference spectroscopy. By monitoring the reflectivity of the samples, we can observe changes in the reflection signal strength of MoS2 with different layer numbers. The intensity of the reflectance differential spectral signal reflects changes in the layer count within the sample. We can characterize the changes in the number of layers of 2D materials in a non-contact manner by using polarization-modulated scanning optical microscopy. Through the study of the reflectance differential spectra of two typical 2D layered materials, MoS2 and ReSe2, we find that our polarization-modulated scanning optical microscope system is also more sensitive to the characteristics of the stacking anisotropy of the 2D materials than the conventional reflection microscope. This indicates that our research contributes to a better understanding of the layer number characteristics and anisotropic properties of layered 2D materials. Furthermore, our research also provides a non-contact optical method to characterize the number of layers and optical anisotropy of two-dimensional layered material.
      通信作者: 张洋, yangzhang@cumt.edu.cn ; 石礼伟, slw@cumt.edu.cn
    • 基金项目: 国家自然科学基金专项基金(批准号: 62341406)、江苏省基础研究计划(自然科学基金)-青年基金(批准号: BK20221113)和徐州市科技项目-基础研究计划(批准号: KC23004)资助的课题.
      Corresponding author: Zhang Yang, yangzhang@cumt.edu.cn ; Shi Li-Wei, slw@cumt.edu.cn
    • Funds: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 62341406), the Young Scientists Fund of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20221113), and the Science and Technology Project-Basic Research Plan of Xuzhou, China (Grant No. KC23004).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Qiao J, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [6]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [10]

    Kim T, Kim D, Kim T, Kim H, Shin C 2022 Microsc. Microanal. 28 1604Google Scholar

    [11]

    Dong X C, Li H W, Yan Y T, Cheng H R, Zhang H X, Zhang Y C, Le T D, Wang K, Dong J, Jakobi M, Yetisen A K, Koch A W 2022 Adv. Theory Simul. 5 2200140Google Scholar

    [12]

    de Graaf S, Kooi B J 2022 2D Mater. 9 015009Google Scholar

    [13]

    Xiao Y P, Zheng W W, Yuan B, Wen C, Lanza M 2021 Cryst. Res. Technol. 56 2100056Google Scholar

    [14]

    Jin Y, Yu K 2021 J. Phys. D: Appl. Phys. 54 393001Google Scholar

    [15]

    Zhou X, Liu Y S, Hu X M, Fang L, Song Y M, Liu D M, Luo J B 2020 Nanotechnology 31 285710Google Scholar

    [16]

    Caplins B W, Holm J D, Keller R R 2019 Carbon 149 400Google Scholar

    [17]

    Liang F, Xu H J, Wu X, Wang C L, Luo C, Zhang J 2018 Chin. Phys. B 27 037802Google Scholar

    [18]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [19]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135Google Scholar

    [20]

    Lee K R, Youn J, Yoo S 2024 Nanophotonics 13 1417Google Scholar

    [21]

    Wang Q, Qin J, Xiao Y, Xu W, Ding L 2023 Electronics 12 864Google Scholar

    [22]

    Zou B, Zhou Y, Zhou Y, Wu Y Y, He Y, Wang X N, Yang J F, Zhang L H, Chen Y X, Zhou S, Guo H X, Sun H R 2022 Nano Res. 15 8470Google Scholar

    [23]

    Wang S Y, Chen G X, Guo Q Q, Huang K X, Zhang X L, Yan X Q, Liu Z B, Tian J G 2021 Nanoscale Adv. 3 3114Google Scholar

    [24]

    乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒 2016 65 136801Google Scholar

    Qiao X F, Li X L, Liu H N, Shi W, Liu X L, Wu J B, Tan P H 2016 Acta Phys. Sin. 65 136801Google Scholar

    [25]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 Appl. Phys. Lett. 113 213105Google Scholar

    [26]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 ACS Photonics 5 2509Google Scholar

    [27]

    Huang W, Yu J L, Liu Y, Peng Y, Wang L J, Liang P, Chen T S, Xu X G, Liu F Q, Chen Y H 2024 Chin. Phys. B 33 037801Google Scholar

    [28]

    Huang W, Liu Y, Zhu L P, Zheng X T, Li Y, Wu Q, Wang Y X, Wang X Q, Chen Y H 2016 Opt. Express 24 15059Google Scholar

    [29]

    Yu J L, Chen Y H, Cheng S Y, Lai Y F 2013 Appl. Opt. 52 1035Google Scholar

    [30]

    Wu S J, Chen Y H, Yu J L, Gao H S, Jiang C Y, Huang J L, Zhang Y H, Wei Y, Ma W Q 2013 Nanoscale Res. Lett. 8 298Google Scholar

    [31]

    Kim E D, Majumdar A, Kim H, Petroff P, Vuckovic J 2010 Appl. Phys. Lett. 97 053111Google Scholar

    [32]

    Aspnes D E, Harbison J P, Studna A A, Florez L T 1987 Phys. Rev. Lett. 59 1687Google Scholar

    [33]

    沈万福 2019 博士论文(天津: 天津大学)

    Shen W F 2019 Ph. D. Dissertation (Tianjin: Tianjin University

    [34]

    蒋虎 2019 博士论文 (哈尔滨: 哈尔滨工业大学)

    Jiang H 2019 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology

    [35]

    Shi Y F, Wang L L, Q X F, Li S, Liu Y, Li X L, Zhao X H 2020 Nanoscale Res. Lett. 15 43Google Scholar

    [36]

    Ermolaev G A, Voronin K V, Toksumakov A N, Grudinin D V, Fradkin I M, Mazitov A, Slavich A S, Tatmyshevskiy M K, Yakubovsky D I, Solovey V R, Kirtaev R V 2024 Nat. Commun. 15 1552Google Scholar

  • 图 1  RDS的实验原理图

    Fig. 1.  Experimental schematic diagram of RDS.

    图 2  偏振调制扫描光学显微镜光路图

    Fig. 2.  Polarization-modulated scanning optical microscope optical path diagram.

    图 3  MoS2光学显微镜照片及反射谱二维图像 (a) 0°的MoS2光学显微镜照片; (b) 90°的MoS2光学显微镜照片; (c), (d)分别为对应的MoS2反射谱(DC信号)的二维图像; (e), (f) 分别为对应的MoS2 AFM图像. 黑线为标度尺, 大小为10 μm

    Fig. 3.  Optical microscope image and reflectance spectrum two-dimensional (2D) image of MoS2: (a) Optical microscope photographs of MoS2 at 0°; (b) optical microscope photographs of MoS2 at 90°; (c), (d) 2D images of the corresponding MoS2 reflection spectra (DC signals), respectively; (e), (f) AFM images of the corresponding MoS2. The black line is a scale with a size of 10 μm.

    图 4  MoS2光学显微镜照片及反射差分谱二维图像 (a) 0°的MoS2光学显微镜照片; (b) 90°的MoS2光学显微镜照片; (c), (d)分别为对应的MoS2 各向异性信号(RDS信号)的二维图像. 黑线为标度尺, 大小为10 μm

    Fig. 4.  Optical microscope image and reflectance differential spectrum 2D Image of MoS2: (a) Optical microscope photographs of MoS2 at 0°; (b) optical microscope photographs of MoS2 at 90°; (c), (d) 2D images of the corresponding MoS2 anisotropic signal (RDS signal), respectively. The black line is a scale with a size of 10 μm.

    图 5  MoS2反射谱与反射差分谱的空间映射图 (a)不同层数MoS2的反射谱的强度空间映射图; (b)不同层数MoS2的RDS信号强度空间映射图

    Fig. 5.  Spatial mapping of MoS2 reflectance spectrum and reflectance differential spectrum: (a) Intensity spatial mapping of reflection spectra for different layers of MoS2; (b) intensity spatial mapping of RDS signal for different layers of MoS2.

    图 6  不同层数MoS2的RDS信号强度随层数的变化

    Fig. 6.  Relationship between the RDS signal intensity of MoS2 and the number of layers.

    图 7  ReSe2的光学显微镜照片、DC信号的二维图像及RDS信号的二维图像 (a) 0° 的ReSe2的光学显微镜照片; (c) 0°的ReSe2的DC信号的二维图像; (e) 0°的ReSe2的RDS信号的二维图像; (b) 90°的ReSe2的光学显微镜照片; (d) 90°的ReSe2的DC信号的二维图像; (f) 90°的ReSe2的RDS信号的二维图像. 黑线为标度尺, 大小为10 μm

    Fig. 7.  Optical microscope image of ReSe2, 2D image of DC signal, and 2D image of RDS signal: (a) Optical microscope photographs of ReSe2 at 0°; (c) 2D image of DC signal of ReSe2 at 0°; (e) 2D image of RDS signal of ReSe2 at 0°; (b) optical microscope photographs of ReSe2 at 90°; (d) 2D image of DC signal of ReSe2 at 90°; (f) 2D image of RDS signal of ReSe2 at 90°. The black line is a scale with a size of 10 μm.

    Baidu
  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Qiao J, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [6]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [10]

    Kim T, Kim D, Kim T, Kim H, Shin C 2022 Microsc. Microanal. 28 1604Google Scholar

    [11]

    Dong X C, Li H W, Yan Y T, Cheng H R, Zhang H X, Zhang Y C, Le T D, Wang K, Dong J, Jakobi M, Yetisen A K, Koch A W 2022 Adv. Theory Simul. 5 2200140Google Scholar

    [12]

    de Graaf S, Kooi B J 2022 2D Mater. 9 015009Google Scholar

    [13]

    Xiao Y P, Zheng W W, Yuan B, Wen C, Lanza M 2021 Cryst. Res. Technol. 56 2100056Google Scholar

    [14]

    Jin Y, Yu K 2021 J. Phys. D: Appl. Phys. 54 393001Google Scholar

    [15]

    Zhou X, Liu Y S, Hu X M, Fang L, Song Y M, Liu D M, Luo J B 2020 Nanotechnology 31 285710Google Scholar

    [16]

    Caplins B W, Holm J D, Keller R R 2019 Carbon 149 400Google Scholar

    [17]

    Liang F, Xu H J, Wu X, Wang C L, Luo C, Zhang J 2018 Chin. Phys. B 27 037802Google Scholar

    [18]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [19]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135Google Scholar

    [20]

    Lee K R, Youn J, Yoo S 2024 Nanophotonics 13 1417Google Scholar

    [21]

    Wang Q, Qin J, Xiao Y, Xu W, Ding L 2023 Electronics 12 864Google Scholar

    [22]

    Zou B, Zhou Y, Zhou Y, Wu Y Y, He Y, Wang X N, Yang J F, Zhang L H, Chen Y X, Zhou S, Guo H X, Sun H R 2022 Nano Res. 15 8470Google Scholar

    [23]

    Wang S Y, Chen G X, Guo Q Q, Huang K X, Zhang X L, Yan X Q, Liu Z B, Tian J G 2021 Nanoscale Adv. 3 3114Google Scholar

    [24]

    乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒 2016 65 136801Google Scholar

    Qiao X F, Li X L, Liu H N, Shi W, Liu X L, Wu J B, Tan P H 2016 Acta Phys. Sin. 65 136801Google Scholar

    [25]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 Appl. Phys. Lett. 113 213105Google Scholar

    [26]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 ACS Photonics 5 2509Google Scholar

    [27]

    Huang W, Yu J L, Liu Y, Peng Y, Wang L J, Liang P, Chen T S, Xu X G, Liu F Q, Chen Y H 2024 Chin. Phys. B 33 037801Google Scholar

    [28]

    Huang W, Liu Y, Zhu L P, Zheng X T, Li Y, Wu Q, Wang Y X, Wang X Q, Chen Y H 2016 Opt. Express 24 15059Google Scholar

    [29]

    Yu J L, Chen Y H, Cheng S Y, Lai Y F 2013 Appl. Opt. 52 1035Google Scholar

    [30]

    Wu S J, Chen Y H, Yu J L, Gao H S, Jiang C Y, Huang J L, Zhang Y H, Wei Y, Ma W Q 2013 Nanoscale Res. Lett. 8 298Google Scholar

    [31]

    Kim E D, Majumdar A, Kim H, Petroff P, Vuckovic J 2010 Appl. Phys. Lett. 97 053111Google Scholar

    [32]

    Aspnes D E, Harbison J P, Studna A A, Florez L T 1987 Phys. Rev. Lett. 59 1687Google Scholar

    [33]

    沈万福 2019 博士论文(天津: 天津大学)

    Shen W F 2019 Ph. D. Dissertation (Tianjin: Tianjin University

    [34]

    蒋虎 2019 博士论文 (哈尔滨: 哈尔滨工业大学)

    Jiang H 2019 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology

    [35]

    Shi Y F, Wang L L, Q X F, Li S, Liu Y, Li X L, Zhao X H 2020 Nanoscale Res. Lett. 15 43Google Scholar

    [36]

    Ermolaev G A, Voronin K V, Toksumakov A N, Grudinin D V, Fradkin I M, Mazitov A, Slavich A S, Tatmyshevskiy M K, Yakubovsky D I, Solovey V R, Kirtaev R V 2024 Nat. Commun. 15 1552Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展.  , 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [4] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展.  , 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性.  , 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [6] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [7] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [8] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [9] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质.  , 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [10] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [11] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [12] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [13] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术.  , 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [14] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响.  , 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [15] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [16] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究.  , 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [17] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像.  , 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [18] 王淑莹, 章海军, 张冬仙. 基于微球透镜的任选区高分辨光学显微成像新方法研究.  , 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [19] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究.  , 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [20] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔. 相干X射线衍射成像的数字模拟研究.  , 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
计量
  • 文章访问数:  1511
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-06-04
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回
Baidu
map