Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Polarization modulation scanning optical microscopy method

Zhang Yang Zhang Zhi-Hao Wang Yu-Jian Xue Xiao-Lan Chen Ling-Xiu Shi Li-Wei

Citation:

Polarization modulation scanning optical microscopy method

Zhang Yang, Zhang Zhi-Hao, Wang Yu-Jian, Xue Xiao-Lan, Chen Ling-Xiu, Shi Li-Wei
PDF
HTML
Get Citation
  • Since the discovery of monolayer graphene, the novel physical properties of two-dimensional (2D) materials, particularly those with fewer layers that often exhibit unique properties different from bulk materials, have received significant attention. Therefore, accurately determining the layer number or obtaining the microscopic surface morphology is crucial in the laboratory fabrication and during device manufacturing. However, traditional detection methods have numerous drawbacks. There is an urgent need for a convenient, accurate, and non-destructive scientific method to characterize the layer number and surface microstructure of 2D materials. By combining the experimental setup of laser scanning photocurrent spectroscopy, we develop a polarization-modulated scanning optical microscope based on the principle of reflectance difference spectroscopy. By monitoring the reflectivity of the samples, we can observe changes in the reflection signal strength of MoS2 with different layer numbers. The intensity of the reflectance differential spectral signal reflects changes in the layer count within the sample. We can characterize the changes in the number of layers of 2D materials in a non-contact manner by using polarization-modulated scanning optical microscopy. Through the study of the reflectance differential spectra of two typical 2D layered materials, MoS2 and ReSe2, we find that our polarization-modulated scanning optical microscope system is also more sensitive to the characteristics of the stacking anisotropy of the 2D materials than the conventional reflection microscope. This indicates that our research contributes to a better understanding of the layer number characteristics and anisotropic properties of layered 2D materials. Furthermore, our research also provides a non-contact optical method to characterize the number of layers and optical anisotropy of two-dimensional layered material.
      Corresponding author: Zhang Yang, yangzhang@cumt.edu.cn ; Shi Li-Wei, slw@cumt.edu.cn
    • Funds: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 62341406), the Young Scientists Fund of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20221113), and the Science and Technology Project-Basic Research Plan of Xuzhou, China (Grant No. KC23004).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Qiao J, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [6]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [10]

    Kim T, Kim D, Kim T, Kim H, Shin C 2022 Microsc. Microanal. 28 1604Google Scholar

    [11]

    Dong X C, Li H W, Yan Y T, Cheng H R, Zhang H X, Zhang Y C, Le T D, Wang K, Dong J, Jakobi M, Yetisen A K, Koch A W 2022 Adv. Theory Simul. 5 2200140Google Scholar

    [12]

    de Graaf S, Kooi B J 2022 2D Mater. 9 015009Google Scholar

    [13]

    Xiao Y P, Zheng W W, Yuan B, Wen C, Lanza M 2021 Cryst. Res. Technol. 56 2100056Google Scholar

    [14]

    Jin Y, Yu K 2021 J. Phys. D: Appl. Phys. 54 393001Google Scholar

    [15]

    Zhou X, Liu Y S, Hu X M, Fang L, Song Y M, Liu D M, Luo J B 2020 Nanotechnology 31 285710Google Scholar

    [16]

    Caplins B W, Holm J D, Keller R R 2019 Carbon 149 400Google Scholar

    [17]

    Liang F, Xu H J, Wu X, Wang C L, Luo C, Zhang J 2018 Chin. Phys. B 27 037802Google Scholar

    [18]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [19]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135Google Scholar

    [20]

    Lee K R, Youn J, Yoo S 2024 Nanophotonics 13 1417Google Scholar

    [21]

    Wang Q, Qin J, Xiao Y, Xu W, Ding L 2023 Electronics 12 864Google Scholar

    [22]

    Zou B, Zhou Y, Zhou Y, Wu Y Y, He Y, Wang X N, Yang J F, Zhang L H, Chen Y X, Zhou S, Guo H X, Sun H R 2022 Nano Res. 15 8470Google Scholar

    [23]

    Wang S Y, Chen G X, Guo Q Q, Huang K X, Zhang X L, Yan X Q, Liu Z B, Tian J G 2021 Nanoscale Adv. 3 3114Google Scholar

    [24]

    乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒 2016 65 136801Google Scholar

    Qiao X F, Li X L, Liu H N, Shi W, Liu X L, Wu J B, Tan P H 2016 Acta Phys. Sin. 65 136801Google Scholar

    [25]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 Appl. Phys. Lett. 113 213105Google Scholar

    [26]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 ACS Photonics 5 2509Google Scholar

    [27]

    Huang W, Yu J L, Liu Y, Peng Y, Wang L J, Liang P, Chen T S, Xu X G, Liu F Q, Chen Y H 2024 Chin. Phys. B 33 037801Google Scholar

    [28]

    Huang W, Liu Y, Zhu L P, Zheng X T, Li Y, Wu Q, Wang Y X, Wang X Q, Chen Y H 2016 Opt. Express 24 15059Google Scholar

    [29]

    Yu J L, Chen Y H, Cheng S Y, Lai Y F 2013 Appl. Opt. 52 1035Google Scholar

    [30]

    Wu S J, Chen Y H, Yu J L, Gao H S, Jiang C Y, Huang J L, Zhang Y H, Wei Y, Ma W Q 2013 Nanoscale Res. Lett. 8 298Google Scholar

    [31]

    Kim E D, Majumdar A, Kim H, Petroff P, Vuckovic J 2010 Appl. Phys. Lett. 97 053111Google Scholar

    [32]

    Aspnes D E, Harbison J P, Studna A A, Florez L T 1987 Phys. Rev. Lett. 59 1687Google Scholar

    [33]

    沈万福 2019 博士论文(天津: 天津大学)

    Shen W F 2019 Ph. D. Dissertation (Tianjin: Tianjin University

    [34]

    蒋虎 2019 博士论文 (哈尔滨: 哈尔滨工业大学)

    Jiang H 2019 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology

    [35]

    Shi Y F, Wang L L, Q X F, Li S, Liu Y, Li X L, Zhao X H 2020 Nanoscale Res. Lett. 15 43Google Scholar

    [36]

    Ermolaev G A, Voronin K V, Toksumakov A N, Grudinin D V, Fradkin I M, Mazitov A, Slavich A S, Tatmyshevskiy M K, Yakubovsky D I, Solovey V R, Kirtaev R V 2024 Nat. Commun. 15 1552Google Scholar

  • 图 1  RDS的实验原理图

    Figure 1.  Experimental schematic diagram of RDS.

    图 2  偏振调制扫描光学显微镜光路图

    Figure 2.  Polarization-modulated scanning optical microscope optical path diagram.

    图 3  MoS2光学显微镜照片及反射谱二维图像 (a) 0°的MoS2光学显微镜照片; (b) 90°的MoS2光学显微镜照片; (c), (d)分别为对应的MoS2反射谱(DC信号)的二维图像; (e), (f) 分别为对应的MoS2 AFM图像. 黑线为标度尺, 大小为10 μm

    Figure 3.  Optical microscope image and reflectance spectrum two-dimensional (2D) image of MoS2: (a) Optical microscope photographs of MoS2 at 0°; (b) optical microscope photographs of MoS2 at 90°; (c), (d) 2D images of the corresponding MoS2 reflection spectra (DC signals), respectively; (e), (f) AFM images of the corresponding MoS2. The black line is a scale with a size of 10 μm.

    图 4  MoS2光学显微镜照片及反射差分谱二维图像 (a) 0°的MoS2光学显微镜照片; (b) 90°的MoS2光学显微镜照片; (c), (d)分别为对应的MoS2 各向异性信号(RDS信号)的二维图像. 黑线为标度尺, 大小为10 μm

    Figure 4.  Optical microscope image and reflectance differential spectrum 2D Image of MoS2: (a) Optical microscope photographs of MoS2 at 0°; (b) optical microscope photographs of MoS2 at 90°; (c), (d) 2D images of the corresponding MoS2 anisotropic signal (RDS signal), respectively. The black line is a scale with a size of 10 μm.

    图 5  MoS2反射谱与反射差分谱的空间映射图 (a)不同层数MoS2的反射谱的强度空间映射图; (b)不同层数MoS2的RDS信号强度空间映射图

    Figure 5.  Spatial mapping of MoS2 reflectance spectrum and reflectance differential spectrum: (a) Intensity spatial mapping of reflection spectra for different layers of MoS2; (b) intensity spatial mapping of RDS signal for different layers of MoS2.

    图 6  不同层数MoS2的RDS信号强度随层数的变化

    Figure 6.  Relationship between the RDS signal intensity of MoS2 and the number of layers.

    图 7  ReSe2的光学显微镜照片、DC信号的二维图像及RDS信号的二维图像 (a) 0° 的ReSe2的光学显微镜照片; (c) 0°的ReSe2的DC信号的二维图像; (e) 0°的ReSe2的RDS信号的二维图像; (b) 90°的ReSe2的光学显微镜照片; (d) 90°的ReSe2的DC信号的二维图像; (f) 90°的ReSe2的RDS信号的二维图像. 黑线为标度尺, 大小为10 μm

    Figure 7.  Optical microscope image of ReSe2, 2D image of DC signal, and 2D image of RDS signal: (a) Optical microscope photographs of ReSe2 at 0°; (c) 2D image of DC signal of ReSe2 at 0°; (e) 2D image of RDS signal of ReSe2 at 0°; (b) optical microscope photographs of ReSe2 at 90°; (d) 2D image of DC signal of ReSe2 at 90°; (f) 2D image of RDS signal of ReSe2 at 90°. The black line is a scale with a size of 10 μm.

    Baidu
  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [4]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [5]

    Qiao J, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [6]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [10]

    Kim T, Kim D, Kim T, Kim H, Shin C 2022 Microsc. Microanal. 28 1604Google Scholar

    [11]

    Dong X C, Li H W, Yan Y T, Cheng H R, Zhang H X, Zhang Y C, Le T D, Wang K, Dong J, Jakobi M, Yetisen A K, Koch A W 2022 Adv. Theory Simul. 5 2200140Google Scholar

    [12]

    de Graaf S, Kooi B J 2022 2D Mater. 9 015009Google Scholar

    [13]

    Xiao Y P, Zheng W W, Yuan B, Wen C, Lanza M 2021 Cryst. Res. Technol. 56 2100056Google Scholar

    [14]

    Jin Y, Yu K 2021 J. Phys. D: Appl. Phys. 54 393001Google Scholar

    [15]

    Zhou X, Liu Y S, Hu X M, Fang L, Song Y M, Liu D M, Luo J B 2020 Nanotechnology 31 285710Google Scholar

    [16]

    Caplins B W, Holm J D, Keller R R 2019 Carbon 149 400Google Scholar

    [17]

    Liang F, Xu H J, Wu X, Wang C L, Luo C, Zhang J 2018 Chin. Phys. B 27 037802Google Scholar

    [18]

    Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757Google Scholar

    [19]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135Google Scholar

    [20]

    Lee K R, Youn J, Yoo S 2024 Nanophotonics 13 1417Google Scholar

    [21]

    Wang Q, Qin J, Xiao Y, Xu W, Ding L 2023 Electronics 12 864Google Scholar

    [22]

    Zou B, Zhou Y, Zhou Y, Wu Y Y, He Y, Wang X N, Yang J F, Zhang L H, Chen Y X, Zhou S, Guo H X, Sun H R 2022 Nano Res. 15 8470Google Scholar

    [23]

    Wang S Y, Chen G X, Guo Q Q, Huang K X, Zhang X L, Yan X Q, Liu Z B, Tian J G 2021 Nanoscale Adv. 3 3114Google Scholar

    [24]

    乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒 2016 65 136801Google Scholar

    Qiao X F, Li X L, Liu H N, Shi W, Liu X L, Wu J B, Tan P H 2016 Acta Phys. Sin. 65 136801Google Scholar

    [25]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 Appl. Phys. Lett. 113 213105Google Scholar

    [26]

    Jiang H, Shi H Y, Sun X D, Gao B 2018 ACS Photonics 5 2509Google Scholar

    [27]

    Huang W, Yu J L, Liu Y, Peng Y, Wang L J, Liang P, Chen T S, Xu X G, Liu F Q, Chen Y H 2024 Chin. Phys. B 33 037801Google Scholar

    [28]

    Huang W, Liu Y, Zhu L P, Zheng X T, Li Y, Wu Q, Wang Y X, Wang X Q, Chen Y H 2016 Opt. Express 24 15059Google Scholar

    [29]

    Yu J L, Chen Y H, Cheng S Y, Lai Y F 2013 Appl. Opt. 52 1035Google Scholar

    [30]

    Wu S J, Chen Y H, Yu J L, Gao H S, Jiang C Y, Huang J L, Zhang Y H, Wei Y, Ma W Q 2013 Nanoscale Res. Lett. 8 298Google Scholar

    [31]

    Kim E D, Majumdar A, Kim H, Petroff P, Vuckovic J 2010 Appl. Phys. Lett. 97 053111Google Scholar

    [32]

    Aspnes D E, Harbison J P, Studna A A, Florez L T 1987 Phys. Rev. Lett. 59 1687Google Scholar

    [33]

    沈万福 2019 博士论文(天津: 天津大学)

    Shen W F 2019 Ph. D. Dissertation (Tianjin: Tianjin University

    [34]

    蒋虎 2019 博士论文 (哈尔滨: 哈尔滨工业大学)

    Jiang H 2019 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology

    [35]

    Shi Y F, Wang L L, Q X F, Li S, Liu Y, Li X L, Zhao X H 2020 Nanoscale Res. Lett. 15 43Google Scholar

    [36]

    Ermolaev G A, Voronin K V, Toksumakov A N, Grudinin D V, Fradkin I M, Mazitov A, Slavich A S, Tatmyshevskiy M K, Yakubovsky D I, Solovey V R, Kirtaev R V 2024 Nat. Commun. 15 1552Google Scholar

  • [1] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] Wei Qian-Yi, Ni Jie-Lei, Li Ling, Zhang Yu-Quan, Yuan Xiao-Cong, Min Chang-Jun. Research progress of ultra-high spatiotemporally resolved microscopy. Acta Physica Sinica, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [4] Liu Ning, Liu Ken, Zhu Zhi-Hong. Research progress of nonlinear optical properties of integrated two-dimensional materials. Acta Physica Sinica, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] Cheng Qiu-Zhen, Huang Yin, Li Yu-Hui, Zhang Kai, Xian Guo-Yu, Liu He-Yuan, Che Bing-Yu, Pan Lu-Lu, Han Ye-Chao, Zhu Ke, Qi Qi, Xie Yao-Feng, Pan Jin-Bo, Chen Hai-Long, Li Yong-Feng, Guo Hui, Yang Hai-Tao, Gao Hong-Jun. In-plane optical anisotropy of quasi-one-dimensional layered semiconductor Nb4P2S21 single crystal. Acta Physica Sinica, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [6] Li Ce, Yang Dong-Liang, Sun Lin-Feng. Research progress of neuromorphic devices based on two-dimensional layered materials. Acta Physica Sinica, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [7] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [8] Liao Jun-Yi, Wu Juan-Xia, Dang Chun-He, Xie Li-Ming. Methods of transferring two-dimensional materials. Acta Physica Sinica, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [9] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [10] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [11] Xu Yi-Quan, Wang Cong. All-optical devices based on two-dimensional materials. Acta Physica Sinica, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [12] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [13] Zhang Yi-Yi, Wu Jia-Chen, Hao Ran, Jin Shang-Zhong, Cao Liang-Cai. Digital holographic microscopy for red blood cell imaging. Acta Physica Sinica, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [14] Wang Jian-Guo, Yang Song-Lin, Ye Yong-Hong. Effect of silver film roughness on imaging property of BaTiO3 microsphere. Acta Physica Sinica, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [15] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [16] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Qu Jun-Le, Niu Han-Ben. Research on coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [17] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [18] Wang Shu-Ying, Zhang Hai-Jun, Zhang Dong-Xian. Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses. Acta Physica Sinica, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [19] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [20] Zhou Guang-Zhao, Tong Ya-Jun, Chen Can, Ren Yu-Qi, Wang Yu-Dan, Xiao Ti-Qiao. Digital simulation for coherent X-ray diffractive imaging. Acta Physica Sinica, 2011, 60(2): 028701. doi: 10.7498/aps.60.028701
Metrics
  • Abstract views:  1483
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2024
  • Accepted Date:  04 June 2024
  • Available Online:  01 July 2024
  • Published Online:  05 August 2024

/

返回文章
返回
Baidu
map