Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Confocal-cavity-enhanced Raman scattering of ambient air

Li Bin Luo Shi-Wen Yu An-Lan Xiong Dong-Sheng Wang Xin-Bing Zuo Du-Luo

Citation:

Confocal-cavity-enhanced Raman scattering of ambient air

Li Bin, Luo Shi-Wen, Yu An-Lan, Xiong Dong-Sheng, Wang Xin-Bing, Zuo Du-Luo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Raman spectroscopy is a powerful diagnostic method for gas analysis due to its advantages like non-invasiveness and fast speed. However, its applications are greatly restricted because of the weak signal level caused by small scattering cross section. In order to enhance the Raman signal level and improve the detection sensitivity, a sample cell of confocal cavity is designed and the enhanced Raman signal of ambient air based on this cavity is demonstrated experimentally. The confocal cavity is constructed with a pair of plano-concave reflectors with a curvature radius of 150 mm and reflectivity of 92%. This low reflectivity design not only allows for bandwidth matching with the line-width of excitation laser but also makes the resonant condition satisfied easily. The measured output power of the confocal cavity is over 42 mW in resonant condition, which gives a coupling efficiency of 87.5% when divided with the input power 48 mW. The high coupling efficiency enables the output power efficiently to reach 11 times that for the intra-cavity laser power in one direction. Raman scattering of ambient air is tested to verify the performance of the confocal cavity. In our experiments, the Raman signals are collected in a forward scattering configuration by an imaging Raman spectrometer which is connected to a CCD camera. Strong Raman signals of O2 and N2, even H2O are observed with 1 s exposure time in resonant condition, and rotational lines (O-branch and S-branch) of O2 and N2 are also clearly detected when exposure time is set to be 10 s. Compared with the results obtained without confocal cavity, the Raman signal level is enhanced 17 times and the signal-to-noise ratio is improved twice. In addition, a limit of detection (3) at a magnitude of 200 ppm for CO2 in ambient air is achieved for the resonant confocal cavity. These results indicate that the system can significantly enhance the spontaneous Raman scattering signal level and improve the detection sensitivity. Furthermore, the confocal cavity is applicable to the Raman analyses of other gas samples.
      Corresponding author: Zuo Du-Luo, zuoduluo@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675082).
    [1]

    Zhang L, Zheng H Y, Wang Y P, Ding L, Fang L 2016 Acta Phys. Sin. 65 054206 (in Chinese)[张莉, 郑海洋, 王颖萍, 丁蕾, 方黎 2016 65 054206]

    [2]

    Buldakov M A, Korolkov V A, Matrosov I I, Petrov D V, Tikhomirov A A 2013 J. Opt. Technol. 80 426

    [3]

    Jochum T, Fischer J C, Trumbore S, Popp J, Frosch T 2015 Anal. Chem. 87 11137

    [4]

    Schlter S, Krischke F, Popovska-Leipertz N, Seeger T, Breuer G, Jeleazcov C, Schttler J, Leipertz A 2015 J. Raman Spectrosc. 46 708

    [5]

    Shreve A P, Cherepy N J, Mathies R A 1992 Appl. Spectrosc. 46 707

    [6]

    Troyanova-Wood M A, Petrov G I, Yakovlev V V 2013 J. Raman Spectrosc. 44 1789

    [7]

    Son H 2013 Sensors and Actuators B:Chemical 176 64

    [8]

    Yang X, Chang A S P, Chen B, Gu C, Bondet T C 2013 Sensors and Actuators B: Chemical 176 64

    [9]

    Guo J J, Yang D W, Liu C H 2016 Spectrosc. Spect. Anal. 36 96 (in Chinese) [郭金家, 杨德旺, 刘春昊 2016 光谱学与光谱分析 36 96]

    [10]

    Yu A L, Zuo D L, Li B, Gao J, Wang X B 2016 Appl. Opt. 55 3650

    [11]

    Rupp S, Off A, Seitz-Moskaliuk H, James M T, Telle H H 2015 Sensors 15 23110

    [12]

    Utsav K, Silver J A, Hovde D C, Varghese P L 2011 Appl. Opt. 50 4805

    [13]

    Hill R A, Hartley D L 1974 Appl. Opt. 13 186

    [14]

    Li X Y, Xia Y X, Zhan L, Huang J M 2008 Opt. Lett. 33 2143

    [15]

    Yang D W, Guo J J, Du Z F, Wang Z N, Zheng R E 2015 Spectrosc. Spect. Anal. 35 645 (in Chinese) [杨德旺, 郭金家, 杜增丰, 王振南, 郑荣儿 2015 光谱学与光谱分析 35 645]

    [16]

    Li X Y, Xia Y X, Huang J M, Zhan L 2008 Chin. Phys. Lett. 25 3326

    [17]

    King D A, Pittaro R J 1998 Opt. Lett. 23 774

    [18]

    Thorstensen J, Haugholt K H, Ferber A, Bakke K A H, Tschudi J 2014 J. Europ. Opt. Soc. Rap. Public. 9 14054

    [19]

    Salter R, Chu J, Hippler M 2012 Analyst 137 4669

    [20]

    Karpf A, Rao G N 2015 Appl. Opt. 54 6085

    [21]

    Zuo D L, Yu A L, Li Z, Wang X B, Xiong Y H 2015 Proc. of SPIE 9611 Imaging Spectrometry XX San Diego, California, United States, August 9, 2015 96110N-19

    [22]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (Second Edition) (Hoboken: Wiley-Interscience)pp394395

    [23]

    Barnes J A, Gough T E, Stoer M 1999 Rev. Sci. Instrum. 70 3515

    [24]

    Hanf S, Keiner R, Yan D, Popp J, Frosch T 2014 Anal. Chem. 86 5278

    [25]

    Zhang S G, Hu S X, Lin J M, Shao S S, Cao K F, Huang J, Xu Z H 2014 Infrared Laser Eng. 43 1135 (in Chinese) [张世国, 胡顺星, 林金明, 邵石生, 曹开法, 黄见, 徐之海 2014 红外与激光工程 43 1135]

  • [1]

    Zhang L, Zheng H Y, Wang Y P, Ding L, Fang L 2016 Acta Phys. Sin. 65 054206 (in Chinese)[张莉, 郑海洋, 王颖萍, 丁蕾, 方黎 2016 65 054206]

    [2]

    Buldakov M A, Korolkov V A, Matrosov I I, Petrov D V, Tikhomirov A A 2013 J. Opt. Technol. 80 426

    [3]

    Jochum T, Fischer J C, Trumbore S, Popp J, Frosch T 2015 Anal. Chem. 87 11137

    [4]

    Schlter S, Krischke F, Popovska-Leipertz N, Seeger T, Breuer G, Jeleazcov C, Schttler J, Leipertz A 2015 J. Raman Spectrosc. 46 708

    [5]

    Shreve A P, Cherepy N J, Mathies R A 1992 Appl. Spectrosc. 46 707

    [6]

    Troyanova-Wood M A, Petrov G I, Yakovlev V V 2013 J. Raman Spectrosc. 44 1789

    [7]

    Son H 2013 Sensors and Actuators B:Chemical 176 64

    [8]

    Yang X, Chang A S P, Chen B, Gu C, Bondet T C 2013 Sensors and Actuators B: Chemical 176 64

    [9]

    Guo J J, Yang D W, Liu C H 2016 Spectrosc. Spect. Anal. 36 96 (in Chinese) [郭金家, 杨德旺, 刘春昊 2016 光谱学与光谱分析 36 96]

    [10]

    Yu A L, Zuo D L, Li B, Gao J, Wang X B 2016 Appl. Opt. 55 3650

    [11]

    Rupp S, Off A, Seitz-Moskaliuk H, James M T, Telle H H 2015 Sensors 15 23110

    [12]

    Utsav K, Silver J A, Hovde D C, Varghese P L 2011 Appl. Opt. 50 4805

    [13]

    Hill R A, Hartley D L 1974 Appl. Opt. 13 186

    [14]

    Li X Y, Xia Y X, Zhan L, Huang J M 2008 Opt. Lett. 33 2143

    [15]

    Yang D W, Guo J J, Du Z F, Wang Z N, Zheng R E 2015 Spectrosc. Spect. Anal. 35 645 (in Chinese) [杨德旺, 郭金家, 杜增丰, 王振南, 郑荣儿 2015 光谱学与光谱分析 35 645]

    [16]

    Li X Y, Xia Y X, Huang J M, Zhan L 2008 Chin. Phys. Lett. 25 3326

    [17]

    King D A, Pittaro R J 1998 Opt. Lett. 23 774

    [18]

    Thorstensen J, Haugholt K H, Ferber A, Bakke K A H, Tschudi J 2014 J. Europ. Opt. Soc. Rap. Public. 9 14054

    [19]

    Salter R, Chu J, Hippler M 2012 Analyst 137 4669

    [20]

    Karpf A, Rao G N 2015 Appl. Opt. 54 6085

    [21]

    Zuo D L, Yu A L, Li Z, Wang X B, Xiong Y H 2015 Proc. of SPIE 9611 Imaging Spectrometry XX San Diego, California, United States, August 9, 2015 96110N-19

    [22]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (Second Edition) (Hoboken: Wiley-Interscience)pp394395

    [23]

    Barnes J A, Gough T E, Stoer M 1999 Rev. Sci. Instrum. 70 3515

    [24]

    Hanf S, Keiner R, Yan D, Popp J, Frosch T 2014 Anal. Chem. 86 5278

    [25]

    Zhang S G, Hu S X, Lin J M, Shao S S, Cao K F, Huang J, Xu Z H 2014 Infrared Laser Eng. 43 1135 (in Chinese) [张世国, 胡顺星, 林金明, 邵石生, 曹开法, 黄见, 徐之海 2014 红外与激光工程 43 1135]

  • [1] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] He Kuan-Yu, Qiu Tian-Yu, Xi Xiao-Xiang. Optical study on crystal symmetry of two-dimensional WTe2. Acta Physica Sinica, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [3] Liu Na, Wang Yi, Li Wen-Bo, Zhang Li-Yan, He Shi-Kun, Zhao Jian-Kun, Zhao Ji-Jun. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Physica Sinica, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [4] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] Bao Dong, Hua Deng-Xin, Qi Hao, Wang Jun. Method of remotely sensing seawater salinity fine detection based on Raman Brillouin scattering. Acta Physica Sinica, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [6] Li Man, Dai Zhi-Gao, Ying Jian-Jian, Xiao Xiang-Heng, Yue Ya-Nan. Thermal characterization of carbon nanotube fibers based on steady-state electro-Raman-thermal technique. Acta Physica Sinica, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [7] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [8] Ren Xiu-Yun, Tian Zhao-Shuo, Sun Lan-Jun, Fu Shi-You. Effects of laser wavelength on both water temperature measurement precision and detection depth of Raman scattering lidar system. Acta Physica Sinica, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [9] Sun You-Wen, Liu Wen-Qing, Wang Shi-Mei, Huang Shu-Hua, Zeng Yi, Xie Pin-Hua, Chen Jun, Wang Ya-Ping, Si Fu-Qi. Measurement of a gas using none dispersive infrared technique with two analysis channels. Acta Physica Sinica, 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [10] Zhang Hong-Yu, Zhang Shao-Hua, Liang He, Liu Yu-Hong, Luo Jian-Bin. Molecular alignment of nano-thin film using Raman spectroscopy. Acta Physica Sinica, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [11] Zhong Wen-Wu, Liu Fa-Min, Cai Lu-Gang, Ding Peng, Liu Xue-Quan, Li Yi. Effects of codoping of Al and Sb on structure and optical properties of ZnO nanorod ordered array thin films. Acta Physica Sinica, 2011, 60(11): 118102. doi: 10.7498/aps.60.118102
    [12] Wang Wei-Ning. Terahertz and Raman spectra of L-threonine. Acta Physica Sinica, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [13] Hu Ni, Xiong Rui, Wei Wei, Wang Zi-Yu, Wang Li-Li, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. Raman scattering study of the spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [14] Yu Quan-Zhi, Li Yu-Tong, Jiang Xiao-Hua, Liu Yong-Gang, Wang Zhe-Bin, Dong Quan-Li, Liu Feng, Zhang Zhe, Huang Li-Zhen, C. Danson, D. Pepler, Ding Yong-Kun, Fu Shi-Nian, Zhang Jie. Infulence of electron temperature on the two peaks of Thomson scattering ion-acoustic waves in laser plasmas. Acta Physica Sinica, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [15] Liu Guo-Han, Ding Yi, Zhu Xiu-Hong, Chen Guang-Hua, He De-Yan. Preparation and characterization of hydrogenated microcrystalline silicon films by HW-MWECR-CVD. Acta Physica Sinica, 2006, 55(11): 6147-6151. doi: 10.7498/aps.55.6147
    [16] Cao Chun-Fang, Wu Hui-Zhen, Si Jian-Xiao, Xu Tian-Ning, Chen Jing, Shen Wen-Zhong. Abnormal Raman spectra of PbTe crystalline thin films grown by molecular beam epitaxy. Acta Physica Sinica, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [17] Cheng Ze. Unified quantum field theory of Raman scattering of light in piezoelectric crystals. Acta Physica Sinica, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [18] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [19] Zhang Xi-He, Yao Zhi-Hai, Li Xiao-Ying, Li Chun-Ming, Feng Ke-Cheng, Wang Zhao-Min. Study of the spectral characters of stimulated Raman scattering in highly elliptical-core optical fibres. Acta Physica Sinica, 2003, 52(4): 840-843. doi: 10.7498/aps.52.840
    [20] Zhang Ji-Cai, Dai Lun, Qin Guo-Gang, Ying Li-Zhen, Zhao Xin-Sheng. . Acta Physica Sinica, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
Metrics
  • Abstract views:  7152
  • PDF Downloads:  254
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2017
  • Accepted Date:  15 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map