-
Laser Raman spectroscopy is used to study the enhancement effect of two-magnon scattering in nickel oxide through annealing treatment in a temperature range from 450 ℃ to 1050 ℃, and investigate laser heating effect on two-magnon scattering. Our study shows that two-magnon scattering of nickel oxide can be tremendously enhanced with annealing temperature rising. In the temperature range from 450 ℃ to 1050 ℃, the enhancement increases with annealing temperature increasing, and with 1050 ℃ annealing the two-magnon scattering can be enhanced more than two orders of magnitude, also the enhancement of two-magnon scattering is much stronger than that of two-phonon scattering. This tremendous enhancement is correlated not only with the significant decrease of Ni-vacancy by high temperature annealing, but also with the magnetic spin ordering network of Ni ions. The variation of sensitive intensity of two-magnon scattering with the concentration of Ni-vacancy can be used to provide a simple Raman spectroscopy method of quantitatively measuring the Ni-vacancy in nickel oxide. In addition, the annealing treatment can significantly reduce the laser heating effect on two-magnon scatting in nickel oxide power samples. At low annealing temperature, the intensity of two-magnon scattering quickly quenches with increasing laser power. With 1050 ℃ annealing, the laser heating effect on two-magnon scattering is significantly reduced and two-magnon scattering can still have strong intensity at high laser power.
-
Keywords:
- two-magnon /
- Raman spectroscopy /
- annealed /
- nickel oxide
[1] Dharmaraj N, Prabu P, Nagarajan S, Kim C H, Park J H, Kim H Y 2006 Mater. Sci. Eng. B 128 111Google Scholar
[2] Chen Z Y, Chen Y Q, Zhang Q K, Tang X Q, Wang D D, Chen Z Q, Mascher P, Wang S J 2017 ECS J. Solid State Sci. Technol. 6 798Google Scholar
[3] Mishra Sunil K, Subrahmanyam V 2011 Int. J. Mod. Phys. B 25 2507Google Scholar
[4] Gandhi S, Nagalakshmi N, Baskaran I, Dhanalakshmi V, Gopinathan Nair M R, Anbarasan R 2010 J. Appl. Polym. Sci. 118 1666Google Scholar
[5] Wang Y, Zhu J, Yang X, Lu L, Wang X 2005 Thermochim. Acta 437 106Google Scholar
[6] Plashnitsa V V, Gupta V, Miura N 2010 Electrochim. Acta 55 6941Google Scholar
[7] Chen X B, Kong M H, Choi J Y, Kim H T 2016 J. Phys. D: Appl. Phys. 49 465304Google Scholar
[8] Chen X B, Guo P C, Huyen N T, Kim S, Yang I S, Wang X Y, Cheong S W 2017 Appl. Phys. Lett. 110 122405Google Scholar
[9] Nam J Y, Kim S, Nguyen H T M, Chen X B, Choi M S, Lee D, Noh T W, Yang I S 2020 J. Raman Spectrosc. 51 2298Google Scholar
[10] Gandhi A C, Huang C Y, Yang C C, Chan T S, Cheng C L, Ma Y R, Wu S Y 2011 Nanoscale Res. Lett. 6 485Google Scholar
[11] Sunny A, Balasubramanian K 2020 J. Phys. Chem. C 124 12636Google Scholar
[12] Mironova-Ulmane N, Kuzmin A, Sildos I, Puust L, Grabis J 2019 Latv. J. Phys. Tech. Sci. 56 61Google Scholar
[13] Deshpande M P, Patel K N, Gujarati V P, Patel K, Chaki S H 2016 Adv. Mater. Res. 1141 65Google Scholar
[14] Lockwood D J, Cottam M G, Baskey J H 1992 J. Magn. Magn. Mater. 104-107 1053Google Scholar
[15] Duan W J, Lu S H, Wu Z L, Wang Y S 2012 J. Phys. Chem. C 116 26043Google Scholar
[16] Gandhi A C, Pant J, Pandit S D, Dalimbkar S K, Chan T S, Cheng C L, Ma Y R, Sheng Y W 2013 J. Phys. Chem. C 117 18666Google Scholar
[17] Lacerda M M, Kargar F, Aytan E, Samnakay R, Debnath B, Li J X, Khitun A, Lake R K, Shi J, Balandin A A 2017 Appl. Phys. Lett. 110 202406Google Scholar
[18] Baran S, Hoser A, Penc B, Szytula A 2016 Acta Phys. Pol. A 129 35Google Scholar
[19] Hou H Y, Yang M, Qiu J, Yang Y S, Chen X B 2019 Cryst. 9 357Google Scholar
[20] Bala N, Singh H K, Verma S, Rath S 2020 Phys. Rev. B 102 024423Google Scholar
[21] Dietz R E, Parisot G I, Meixner A E 1971 Phys. Rev. B 4 2302Google Scholar
-
图 2 (a) 归一化2M散射强度与退火温度的关系. 插图为六角锰氧化物中磁振子散射强度与非磁性离子浓度的关系[9]. (b) 2M与2LO散射强度比及归一化2M散射强度的对数与退火温度的关系
Figure 2. (a) Normalized 2M intensity as a function of annealing temperature. Inset is the magnon scattering intensity as a function of non-magnetic doping concentration in hexagonal manganite[9]. (b) Logarithms of 2M to 2LO intensity ratio and normalized 2M intensity as a function of annealing temperature.
-
[1] Dharmaraj N, Prabu P, Nagarajan S, Kim C H, Park J H, Kim H Y 2006 Mater. Sci. Eng. B 128 111Google Scholar
[2] Chen Z Y, Chen Y Q, Zhang Q K, Tang X Q, Wang D D, Chen Z Q, Mascher P, Wang S J 2017 ECS J. Solid State Sci. Technol. 6 798Google Scholar
[3] Mishra Sunil K, Subrahmanyam V 2011 Int. J. Mod. Phys. B 25 2507Google Scholar
[4] Gandhi S, Nagalakshmi N, Baskaran I, Dhanalakshmi V, Gopinathan Nair M R, Anbarasan R 2010 J. Appl. Polym. Sci. 118 1666Google Scholar
[5] Wang Y, Zhu J, Yang X, Lu L, Wang X 2005 Thermochim. Acta 437 106Google Scholar
[6] Plashnitsa V V, Gupta V, Miura N 2010 Electrochim. Acta 55 6941Google Scholar
[7] Chen X B, Kong M H, Choi J Y, Kim H T 2016 J. Phys. D: Appl. Phys. 49 465304Google Scholar
[8] Chen X B, Guo P C, Huyen N T, Kim S, Yang I S, Wang X Y, Cheong S W 2017 Appl. Phys. Lett. 110 122405Google Scholar
[9] Nam J Y, Kim S, Nguyen H T M, Chen X B, Choi M S, Lee D, Noh T W, Yang I S 2020 J. Raman Spectrosc. 51 2298Google Scholar
[10] Gandhi A C, Huang C Y, Yang C C, Chan T S, Cheng C L, Ma Y R, Wu S Y 2011 Nanoscale Res. Lett. 6 485Google Scholar
[11] Sunny A, Balasubramanian K 2020 J. Phys. Chem. C 124 12636Google Scholar
[12] Mironova-Ulmane N, Kuzmin A, Sildos I, Puust L, Grabis J 2019 Latv. J. Phys. Tech. Sci. 56 61Google Scholar
[13] Deshpande M P, Patel K N, Gujarati V P, Patel K, Chaki S H 2016 Adv. Mater. Res. 1141 65Google Scholar
[14] Lockwood D J, Cottam M G, Baskey J H 1992 J. Magn. Magn. Mater. 104-107 1053Google Scholar
[15] Duan W J, Lu S H, Wu Z L, Wang Y S 2012 J. Phys. Chem. C 116 26043Google Scholar
[16] Gandhi A C, Pant J, Pandit S D, Dalimbkar S K, Chan T S, Cheng C L, Ma Y R, Sheng Y W 2013 J. Phys. Chem. C 117 18666Google Scholar
[17] Lacerda M M, Kargar F, Aytan E, Samnakay R, Debnath B, Li J X, Khitun A, Lake R K, Shi J, Balandin A A 2017 Appl. Phys. Lett. 110 202406Google Scholar
[18] Baran S, Hoser A, Penc B, Szytula A 2016 Acta Phys. Pol. A 129 35Google Scholar
[19] Hou H Y, Yang M, Qiu J, Yang Y S, Chen X B 2019 Cryst. 9 357Google Scholar
[20] Bala N, Singh H K, Verma S, Rath S 2020 Phys. Rev. B 102 024423Google Scholar
[21] Dietz R E, Parisot G I, Meixner A E 1971 Phys. Rev. B 4 2302Google Scholar
Catalog
Metrics
- Abstract views: 8165
- PDF Downloads: 199
- Cited By: 0