搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量

张俊 谭平恒 赵伟杰

引用本文:
Citation:

利用径向呼吸模及其倍频模的共振特性精确测定单壁碳纳米管的电子跃迁能量

张俊, 谭平恒, 赵伟杰

Accurate determination of electronic transition energy of carbon nanotubes from the resonant behavior of radial breathing modes and their overtones

Zhang Jun, Tan Ping-Heng, Zhao Wei-Jie
PDF
导出引用
  • 提出一个根据拉曼基频模及其倍频模的斯托克斯和反斯托克斯拉曼成分的不同共振行为来探测样品与激光共振的系统能级的方法.此方法被应用到不均匀单壁碳纳米管束样品中某一径向呼吸模频率为219波数的金属型碳纳米管.通过分析呼吸模及其倍频模和切向模的共振行为,获得了该碳纳米管的电子跃迁能量,并获得纳米管C-C最近邻重叠积分因子为2.80 eV.此数值可以很好的解释单壁碳纳米管径向呼吸模的共振行为.
    The resonant Raman behavior of the radial breathing modes are very useful to analyze the electronic property of carbon nanotubes. We investigated the resonant behaviors of Stokes and anti-Stokes radial breathing mode and its overtone of a metallic nanotube, and show how to accurately determine the electronic transition energy of carbon nanotubes from radial breathing modes and their overtones. Based on the present results, the previously reported resonant Raman behavior of the radial breathing modes of SWNT bundles can be interpreted very well.
    • 基金项目: 国家自然科学基金(批准号:10404029)资助的课题.
    [1]

    Dresselhaus M S, Dresselhaus G, Eklund P C, 1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic)

    [2]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [3]

    Wang F, Dukovic G, Brus L E, Heinz T F 2005 Science 308 838

    [4]

    Tan P H, Rozhin A G, Hasan T, Hu P, Scardaci V, Milne W I, Ferrari A C 2007 Phys. Rev. Lett. 99 137402

    [5]

    Rao A M, Richter E, Bandow S J, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [6]

    Charlier J C, Lambin P 1998 Phys. Rev. B 57 R15037

    [7]

    White C T, Mintmire J W 1998 Nature 394 29

    [8]

    Mintmire J W, White C T 1995 Carbon 33 893

    [9]

    Jishi R A, Inomata D, Nakao K, Dresselhaus M S, Dresselhaus G 1994 J. Phys. Soc. Jpn. 63 2252

    [10]

    Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [11]

    Odom T W, Huang J L, Kim P, Leiber C M 1998 Nature 391 62

    [12]

    Pimenta M A, Marucci A, Empedocles S A, Bawendi M G, Hanlon E B, Rao A M, Eklund P C, Smalley R E, Dresselhaus G, Dresselhaus M S 1998 Phys. Rev. B 58 R16016

    [13]

    Rafailov P M, Jantoljak H, Thomsen C 2000 Phys. Rev. B 61 16719

    [14]

    Kataura K, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y 1999 Synth. Met. 103 2555

    [15]

    Xiao Y, Yan X H, Cao J X, Ding J W 2003 Acta. Phys. Sin. 52 1720 (in Chinese)[肖 杨、颜晓红、曹觉先、丁建文 2003 52 1720]

    [16]

    Wu Y Z, Yu P, Wang Y F, Jing Q H, Ding D T, Lan G X 2005 Acta. Phys. Sin. 54 5262 (in Chinese)[吴延昭、于 平、王玉芳、金庆华、丁大同、蓝国祥 2005 54 5262]

    [17]

    Kuzmany H, Burger B, Hulman M, Kurti J 1998 Eu-rophys. Lett. 44 518

    [18]

    Brown S D M, Corio P, Marucci A, Dresselhaus M S, Pimenta M A, Kneipp K 2000 Phys. Rev. B 61 R5137

    [19]

    Kneipp K, Kneipp H, Corio P, Brown S D M, Shafer K, Motz J, Perelman L T, Hanlon E B, Marucci A, Dresselhaus G, Dresselhaus M S 2000 Phys.Rev.Lett. 84 3470

    [20]

    Milnera M, Kürti J, Hulman M, Kuzmany H 2000 Phys.Rev.Lett. 84 1324

    [21]

    Tan P H, Tang Y, Hu C Y, Li F, Wei Y L, Cheng H M 2000 Phys. Rev. B 62 5186

    [22]

    Kürti J, Kresse G, Kuzmany H 1998 Phys. Rev. B 58 R8869

    [23]

    Henrard L, Hernandez E, Bernier P, Rubio A 1999 Phys. Rev. B 60 R8521

    [24]

    Maultzsch J, Telg H, Reich S, Thomsen C 2005 Phys. Rev. B 72 205438

    [25]

    Son H, Reina A, Samsonidze G G, Saito R, Jorio A, Dresselhaus M S, Kong J 2006 Phys. Rev. B 74 073406

    [26]

    Telg H, Maultzsch J, Reich S, Thomsen C 2006 Phys. Rev. B 74 115415

    [27]

    Filho A G S, Chou S G, Samsonidze G G, Dresselhaus G, Dresselhaus M S, Lei A, Liu J, Swan A K, Unlu M S, Goldberg B B, Jorio A, Gruneis A, Saito R 2004 Phys. Rev. B 69 115428

    [28]

    Duesberg G S, Blau W J, Byrne H J, Blau W J, Byrne H J, Muster J, Burghard M, Roth S 1999 Chem. Phys. Lett. 310 8

    [29]

    Thess A, Lee A, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E 1996 Science 273 483

    [30]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5435

    [31]

    Thomsen C, Reich S 2000 Phys.Rev.Lett. 85 5214

    [32]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [33]

    Zhang S L, Hu X H, Li H D, Shi Z J, Yue K T, Zi J, Gu Z N, Wu X H, Lian Z L, Zhan Y, Huang F M, Zhou L X, ZHang Y G, Iijima S 2002 Phys. Rev. B 66 035413

    [34]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys.Rev.Lett. 88 027401

    [35]

    Jorio A, Dresselhaus G, Dresselhaus M S, Souza M, Dantas M S S, Pimenta M A, Rao A M, Saito R, Liu C, Cheng H M 2000 Phys. Rev. Lett. 85 2617

    [36]

    Saito R, Dresselhaus M S, Dresselhaus G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)

    [37]

    Reich R, Thomsen C 2000 Phys. Rev. B 62 4273

  • [1]

    Dresselhaus M S, Dresselhaus G, Eklund P C, 1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic)

    [2]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [3]

    Wang F, Dukovic G, Brus L E, Heinz T F 2005 Science 308 838

    [4]

    Tan P H, Rozhin A G, Hasan T, Hu P, Scardaci V, Milne W I, Ferrari A C 2007 Phys. Rev. Lett. 99 137402

    [5]

    Rao A M, Richter E, Bandow S J, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [6]

    Charlier J C, Lambin P 1998 Phys. Rev. B 57 R15037

    [7]

    White C T, Mintmire J W 1998 Nature 394 29

    [8]

    Mintmire J W, White C T 1995 Carbon 33 893

    [9]

    Jishi R A, Inomata D, Nakao K, Dresselhaus M S, Dresselhaus G 1994 J. Phys. Soc. Jpn. 63 2252

    [10]

    Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [11]

    Odom T W, Huang J L, Kim P, Leiber C M 1998 Nature 391 62

    [12]

    Pimenta M A, Marucci A, Empedocles S A, Bawendi M G, Hanlon E B, Rao A M, Eklund P C, Smalley R E, Dresselhaus G, Dresselhaus M S 1998 Phys. Rev. B 58 R16016

    [13]

    Rafailov P M, Jantoljak H, Thomsen C 2000 Phys. Rev. B 61 16719

    [14]

    Kataura K, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y 1999 Synth. Met. 103 2555

    [15]

    Xiao Y, Yan X H, Cao J X, Ding J W 2003 Acta. Phys. Sin. 52 1720 (in Chinese)[肖 杨、颜晓红、曹觉先、丁建文 2003 52 1720]

    [16]

    Wu Y Z, Yu P, Wang Y F, Jing Q H, Ding D T, Lan G X 2005 Acta. Phys. Sin. 54 5262 (in Chinese)[吴延昭、于 平、王玉芳、金庆华、丁大同、蓝国祥 2005 54 5262]

    [17]

    Kuzmany H, Burger B, Hulman M, Kurti J 1998 Eu-rophys. Lett. 44 518

    [18]

    Brown S D M, Corio P, Marucci A, Dresselhaus M S, Pimenta M A, Kneipp K 2000 Phys. Rev. B 61 R5137

    [19]

    Kneipp K, Kneipp H, Corio P, Brown S D M, Shafer K, Motz J, Perelman L T, Hanlon E B, Marucci A, Dresselhaus G, Dresselhaus M S 2000 Phys.Rev.Lett. 84 3470

    [20]

    Milnera M, Kürti J, Hulman M, Kuzmany H 2000 Phys.Rev.Lett. 84 1324

    [21]

    Tan P H, Tang Y, Hu C Y, Li F, Wei Y L, Cheng H M 2000 Phys. Rev. B 62 5186

    [22]

    Kürti J, Kresse G, Kuzmany H 1998 Phys. Rev. B 58 R8869

    [23]

    Henrard L, Hernandez E, Bernier P, Rubio A 1999 Phys. Rev. B 60 R8521

    [24]

    Maultzsch J, Telg H, Reich S, Thomsen C 2005 Phys. Rev. B 72 205438

    [25]

    Son H, Reina A, Samsonidze G G, Saito R, Jorio A, Dresselhaus M S, Kong J 2006 Phys. Rev. B 74 073406

    [26]

    Telg H, Maultzsch J, Reich S, Thomsen C 2006 Phys. Rev. B 74 115415

    [27]

    Filho A G S, Chou S G, Samsonidze G G, Dresselhaus G, Dresselhaus M S, Lei A, Liu J, Swan A K, Unlu M S, Goldberg B B, Jorio A, Gruneis A, Saito R 2004 Phys. Rev. B 69 115428

    [28]

    Duesberg G S, Blau W J, Byrne H J, Blau W J, Byrne H J, Muster J, Burghard M, Roth S 1999 Chem. Phys. Lett. 310 8

    [29]

    Thess A, Lee A, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E 1996 Science 273 483

    [30]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5435

    [31]

    Thomsen C, Reich S 2000 Phys.Rev.Lett. 85 5214

    [32]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [33]

    Zhang S L, Hu X H, Li H D, Shi Z J, Yue K T, Zi J, Gu Z N, Wu X H, Lian Z L, Zhan Y, Huang F M, Zhou L X, ZHang Y G, Iijima S 2002 Phys. Rev. B 66 035413

    [34]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys.Rev.Lett. 88 027401

    [35]

    Jorio A, Dresselhaus G, Dresselhaus M S, Souza M, Dantas M S S, Pimenta M A, Rao A M, Saito R, Liu C, Cheng H M 2000 Phys. Rev. Lett. 85 2617

    [36]

    Saito R, Dresselhaus M S, Dresselhaus G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)

    [37]

    Reich R, Thomsen C 2000 Phys. Rev. B 62 4273

  • [1] 王天赐, 夏乾善, 黄信佐, 王永正, 刘斌, 张晋通, 黎涛. 单壁碳纳米管/聚醚酰亚胺电磁屏蔽薄膜的制备与性能.  , 2024, 73(17): 178101. doi: 10.7498/aps.73.20240822
    [2] 丁怡, 盛雷梅. 扭转单壁碳纳米管的第一性原理研究.  , 2023, 72(19): 197302. doi: 10.7498/aps.72.20230566
    [3] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布.  , 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [4] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射.  , 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [5] 令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚. 基于单壁碳纳米管调Q锁模低阈值Tm,Ho:LiLuF4激光器.  , 2018, 67(1): 014201. doi: 10.7498/aps.67.20171748
    [6] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器.  , 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [7] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究.  , 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [8] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察.  , 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [9] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响.  , 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [10] 张丽娟, 胡慧芳, 王志勇, 陈南庭, 谢能, 林冰冰. 含氮SW缺陷对单壁碳纳米管电子结构和光学性质的影响.  , 2011, 60(7): 077209. doi: 10.7498/aps.60.077209
    [11] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究.  , 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [12] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响.  , 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [13] 王照亮, 梁金国, 唐大伟, Y. T. Zhu. 单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论.  , 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [14] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响.  , 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [15] 马燕萍, 尚学府, 顾智企, 李振华, 王 淼, 徐亚伯. 单壁碳纳米管在场发射显示器中的应用研究.  , 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [16] 陈祥磊, 郗传英, 叶邦角, 翁惠民. 碳纳米管束中的正电子理论.  , 2007, 56(11): 6695-6700. doi: 10.7498/aps.56.6695
    [17] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响.  , 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [18] 陆 地, 颜晓红, 丁建文. 单壁碳纳米管中电子的有效质量.  , 2004, 53(2): 527-530. doi: 10.7498/aps.53.527
    [19] 孙建平, 张兆祥, 侯士敏, 赵兴钰, 施祖进, 顾镇南, 刘惟敏, 薛增泉. 用场发射显微镜研究单壁碳纳米管场发射.  , 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
    [20] 黄仕华, 莫玉东. Hg1-xCdxTe的共振拉曼散射.  , 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
计量
  • 文章访问数:  9862
  • PDF下载量:  843
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-02-05
  • 修回日期:  2010-03-16
  • 刊出日期:  2010-11-15

/

返回文章
返回
Baidu
map