搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

n-SiC拉曼散射光谱的温度特性

韩茹 樊晓桠 杨银堂

引用本文:
Citation:

n-SiC拉曼散射光谱的温度特性

韩茹, 樊晓桠, 杨银堂

Temperature-dependent Raman property of n-type SiC

Han Ru, Fan Xiao-Ya, Yang Yin-Tang
PDF
导出引用
  • 测量了采用离子注入法得到掺N的n-SiC晶体从100—450 K的拉曼光谱. 研究了SiC一级拉曼谱、电子拉曼散射谱及二级拉曼谱的温度效应. 实验结果表明,大部分SiC一级拉曼峰会随温度升高向低波数方向移动,但声学模红移(峰值位置向低频方向移动)的幅度较光学模小. 重掺杂4H-SiC的纵光学声子等离子体激元耦合(LOPC)模频率随温度升高表现出先蓝移(峰值位置向高频方向移动)后红移的变化趋势,表明LOPC模的温度特性不仅会受到非简谐效应的影响,还与实际已离化杂质浓度有关. 电子拉曼散射峰线宽随温度升高而增
    Micro-Raman scattering from the nitrogen doped n-SiC is performed at the temperatures ranging from 100 to 450 K. The temperature dependences of the first-order Raman scattering, electronic Raman spectra and the second-order Raman features are obtained. These measurements reveal that most of the first-order Raman phonon frequencies decrease with temperature increasing, but the redshifts of the acoustic phonon modes are smaller than those of the optical phonon modes. Meanwhile, the longitudinal optical phonon-plasma coupled (LOPC) mode manifests different features with temperature increasing. The LOPC mode tends to have a blueshift at a lower temperature but a redshift at a higher temperature. This indicates that the temperature dependence of LOPC mode is affected not only by the anharmonic effects, but also by the ionized donor concentration. With the increase of the measurement temperature, the intensity of the electronic Raman spectrum decreases, and the linewidth gradually broadens, but the electronic Raman signal is almost not shifted. The redshift of the second-order Raman spectrum is smaller than that of the first-order Raman spectrum, but the intensity of the second-order Raman spectrum substantially decreases with the increase of temperature.
    [1]

    [1]Chattopadhyay S N, Pandey P, Overton C B, Krishnamoorthy S, Leong S K 2008 J. Semicond. Technol. Sci. 8 251

    [2]

    [2]Ivanov P A, Levinshtein M E, Palmour J W, Das M, Hull B 2006 Solid State Electron. 50 1368

    [3]

    [3]Song D Y, Holtz M, Chandolu A, Nikishin S A, Mokhov E N, Makarov Y, Helava H 2006 Appl. Phys. Lett. 89 021901

    [4]

    [4]Yang Y T, Han R, Wang P 2008 Chin. Phys. B 17 3459

    [5]

    [5]Han R, Yang Y T, Chai C C 2008 Acta Phys. Sin. 57 3182 (in Chinese) [韩茹、杨银堂、柴常春2008 57 3182]

    [6]

    [6]Kazan M, Zgheib C, Moussaed E, Masri P 2006 Diam. Relat. Mater. 15 1169

    [7]

    [7]Pu X D, Chen J, Shen W Z, Ogawa H, Guo Q X 2005 J. Appl. Phys. 98 033527

    [8]

    [8]Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332

    [9]

    [9]He Q, He W Y, Li C J, Liu W 2009 Chin. Phys. B 18 2012

    [10]

    ]Yan F W, Gao H Y, Zhang H X, Wang G H, Yang F H, Yan J C, Wang J X, Zeng Y P, Li J M 2007 J. Appl. Phys. 101 023506

    [11]

    ]Michael B, Alexander M G, Andreas J H, Rainer H, Robert W S 2009 J. Raman Spectrosc. 40 1867

    [12]

    ]Chafai M, Jaouhari A, Torres A, Anton R, Martin E, Jimenez J, Mitchel W C 2001 J. Appl. Phys. 90 5211

    [13]

    ]Burton J C, Sun L, Pophristic M, Li J, Long F H, Feng Z C, Ferguson I 1998 J. Appl. Phys. 84 6268

    [14]

    ]Kong J F, Ye H B, Zhang D M, Shen W Z, Zhao J L, Li X M 2007 J. Phys. D 40 7471

    [15]

    ]Nakashima S, Harima H 2004 J. Appl. Phys. 95 3541

    [16]

    ]Nakashima S, Harima H, Ohtani N, Okumura H 2004 J. Appl. Phys. 95 3547

    [17]

    ]Burton J C, Long F H 1999 J. Appl. Phys. 86 2073

    [18]

    ]Egilsson T, Ivanov I G, Henry A, Janzén E 2002 J. Appl. Phys. 91 2028

    [19]

    ]Pernot J, Zawadzki W, Contreras S, Robert J L, Neyret E, Di Cioccio L 2001 J. Appl. Phys. 90 1869

    [20]

    ]Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk P, Hoffmann A, Thomsen C 1997 Phys. Rev. B 55 7000

  • [1]

    [1]Chattopadhyay S N, Pandey P, Overton C B, Krishnamoorthy S, Leong S K 2008 J. Semicond. Technol. Sci. 8 251

    [2]

    [2]Ivanov P A, Levinshtein M E, Palmour J W, Das M, Hull B 2006 Solid State Electron. 50 1368

    [3]

    [3]Song D Y, Holtz M, Chandolu A, Nikishin S A, Mokhov E N, Makarov Y, Helava H 2006 Appl. Phys. Lett. 89 021901

    [4]

    [4]Yang Y T, Han R, Wang P 2008 Chin. Phys. B 17 3459

    [5]

    [5]Han R, Yang Y T, Chai C C 2008 Acta Phys. Sin. 57 3182 (in Chinese) [韩茹、杨银堂、柴常春2008 57 3182]

    [6]

    [6]Kazan M, Zgheib C, Moussaed E, Masri P 2006 Diam. Relat. Mater. 15 1169

    [7]

    [7]Pu X D, Chen J, Shen W Z, Ogawa H, Guo Q X 2005 J. Appl. Phys. 98 033527

    [8]

    [8]Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332

    [9]

    [9]He Q, He W Y, Li C J, Liu W 2009 Chin. Phys. B 18 2012

    [10]

    ]Yan F W, Gao H Y, Zhang H X, Wang G H, Yang F H, Yan J C, Wang J X, Zeng Y P, Li J M 2007 J. Appl. Phys. 101 023506

    [11]

    ]Michael B, Alexander M G, Andreas J H, Rainer H, Robert W S 2009 J. Raman Spectrosc. 40 1867

    [12]

    ]Chafai M, Jaouhari A, Torres A, Anton R, Martin E, Jimenez J, Mitchel W C 2001 J. Appl. Phys. 90 5211

    [13]

    ]Burton J C, Sun L, Pophristic M, Li J, Long F H, Feng Z C, Ferguson I 1998 J. Appl. Phys. 84 6268

    [14]

    ]Kong J F, Ye H B, Zhang D M, Shen W Z, Zhao J L, Li X M 2007 J. Phys. D 40 7471

    [15]

    ]Nakashima S, Harima H 2004 J. Appl. Phys. 95 3541

    [16]

    ]Nakashima S, Harima H, Ohtani N, Okumura H 2004 J. Appl. Phys. 95 3547

    [17]

    ]Burton J C, Long F H 1999 J. Appl. Phys. 86 2073

    [18]

    ]Egilsson T, Ivanov I G, Henry A, Janzén E 2002 J. Appl. Phys. 91 2028

    [19]

    ]Pernot J, Zawadzki W, Contreras S, Robert J L, Neyret E, Di Cioccio L 2001 J. Appl. Phys. 90 1869

    [20]

    ]Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk P, Hoffmann A, Thomsen C 1997 Phys. Rev. B 55 7000

  • [1] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究.  , 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [2] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律.  , 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [3] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天. 不同应力下碳化硅场效应晶体管器件总剂量效应及退火特性.  , 2021, 70(16): 166101. doi: 10.7498/aps.70.20210515
    [4] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究.  , 2021, (): . doi: 10.7498/aps.70.20211434
    [5] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失.  , 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [6] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能.  , 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [7] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度.  , 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [8] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失.  , 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [9] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变.  , 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [10] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响.  , 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [11] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响.  , 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [12] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究.  , 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [13] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为.  , 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [14] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究.  , 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [15] 耿西钊, 哈斯乌力吉, 郭翔宇, 李杏, 林殿阳, 何伟明, 范瑞清, 吕志伟. 利用受激布里渊散射能量反射率测量液体介质运动黏度方法的研究.  , 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [16] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响.  , 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [17] 赵学燕, 袁萍, 王杰, 申晓志, 郭逸潇, 乔红贞. 闪电消散过程等离子体温度衰减规律的理论研究.  , 2009, 58(5): 3243-3247. doi: 10.7498/aps.58.3243
    [18] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究.  , 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [19] 韩 茹, 杨银堂, 柴常春. n-SiC的电子拉曼散射及二级拉曼谱研究.  , 2008, 57(5): 3182-3187. doi: 10.7498/aps.57.3182
    [20] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应.  , 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
计量
  • 文章访问数:  11459
  • PDF下载量:  1471
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-01
  • 修回日期:  2010-01-18
  • 刊出日期:  2010-03-05

/

返回文章
返回
Baidu
map