Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accurate determination of electronic transition energy of carbon nanotubes from the resonant behavior of radial breathing modes and their overtones

Zhang Jun Tan Ping-Heng Zhao Wei-Jie

Citation:

Accurate determination of electronic transition energy of carbon nanotubes from the resonant behavior of radial breathing modes and their overtones

Zhang Jun, Tan Ping-Heng, Zhao Wei-Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The resonant Raman behavior of the radial breathing modes are very useful to analyze the electronic property of carbon nanotubes. We investigated the resonant behaviors of Stokes and anti-Stokes radial breathing mode and its overtone of a metallic nanotube, and show how to accurately determine the electronic transition energy of carbon nanotubes from radial breathing modes and their overtones. Based on the present results, the previously reported resonant Raman behavior of the radial breathing modes of SWNT bundles can be interpreted very well.
    [1]

    Dresselhaus M S, Dresselhaus G, Eklund P C, 1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic)

    [2]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [3]

    Wang F, Dukovic G, Brus L E, Heinz T F 2005 Science 308 838

    [4]

    Tan P H, Rozhin A G, Hasan T, Hu P, Scardaci V, Milne W I, Ferrari A C 2007 Phys. Rev. Lett. 99 137402

    [5]

    Rao A M, Richter E, Bandow S J, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [6]

    Charlier J C, Lambin P 1998 Phys. Rev. B 57 R15037

    [7]

    White C T, Mintmire J W 1998 Nature 394 29

    [8]

    Mintmire J W, White C T 1995 Carbon 33 893

    [9]

    Jishi R A, Inomata D, Nakao K, Dresselhaus M S, Dresselhaus G 1994 J. Phys. Soc. Jpn. 63 2252

    [10]

    Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [11]

    Odom T W, Huang J L, Kim P, Leiber C M 1998 Nature 391 62

    [12]

    Pimenta M A, Marucci A, Empedocles S A, Bawendi M G, Hanlon E B, Rao A M, Eklund P C, Smalley R E, Dresselhaus G, Dresselhaus M S 1998 Phys. Rev. B 58 R16016

    [13]

    Rafailov P M, Jantoljak H, Thomsen C 2000 Phys. Rev. B 61 16719

    [14]

    Kataura K, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y 1999 Synth. Met. 103 2555

    [15]

    Xiao Y, Yan X H, Cao J X, Ding J W 2003 Acta. Phys. Sin. 52 1720 (in Chinese)[肖 杨、颜晓红、曹觉先、丁建文 2003 52 1720]

    [16]

    Wu Y Z, Yu P, Wang Y F, Jing Q H, Ding D T, Lan G X 2005 Acta. Phys. Sin. 54 5262 (in Chinese)[吴延昭、于 平、王玉芳、金庆华、丁大同、蓝国祥 2005 54 5262]

    [17]

    Kuzmany H, Burger B, Hulman M, Kurti J 1998 Eu-rophys. Lett. 44 518

    [18]

    Brown S D M, Corio P, Marucci A, Dresselhaus M S, Pimenta M A, Kneipp K 2000 Phys. Rev. B 61 R5137

    [19]

    Kneipp K, Kneipp H, Corio P, Brown S D M, Shafer K, Motz J, Perelman L T, Hanlon E B, Marucci A, Dresselhaus G, Dresselhaus M S 2000 Phys.Rev.Lett. 84 3470

    [20]

    Milnera M, Kürti J, Hulman M, Kuzmany H 2000 Phys.Rev.Lett. 84 1324

    [21]

    Tan P H, Tang Y, Hu C Y, Li F, Wei Y L, Cheng H M 2000 Phys. Rev. B 62 5186

    [22]

    Kürti J, Kresse G, Kuzmany H 1998 Phys. Rev. B 58 R8869

    [23]

    Henrard L, Hernandez E, Bernier P, Rubio A 1999 Phys. Rev. B 60 R8521

    [24]

    Maultzsch J, Telg H, Reich S, Thomsen C 2005 Phys. Rev. B 72 205438

    [25]

    Son H, Reina A, Samsonidze G G, Saito R, Jorio A, Dresselhaus M S, Kong J 2006 Phys. Rev. B 74 073406

    [26]

    Telg H, Maultzsch J, Reich S, Thomsen C 2006 Phys. Rev. B 74 115415

    [27]

    Filho A G S, Chou S G, Samsonidze G G, Dresselhaus G, Dresselhaus M S, Lei A, Liu J, Swan A K, Unlu M S, Goldberg B B, Jorio A, Gruneis A, Saito R 2004 Phys. Rev. B 69 115428

    [28]

    Duesberg G S, Blau W J, Byrne H J, Blau W J, Byrne H J, Muster J, Burghard M, Roth S 1999 Chem. Phys. Lett. 310 8

    [29]

    Thess A, Lee A, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E 1996 Science 273 483

    [30]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5435

    [31]

    Thomsen C, Reich S 2000 Phys.Rev.Lett. 85 5214

    [32]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [33]

    Zhang S L, Hu X H, Li H D, Shi Z J, Yue K T, Zi J, Gu Z N, Wu X H, Lian Z L, Zhan Y, Huang F M, Zhou L X, ZHang Y G, Iijima S 2002 Phys. Rev. B 66 035413

    [34]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys.Rev.Lett. 88 027401

    [35]

    Jorio A, Dresselhaus G, Dresselhaus M S, Souza M, Dantas M S S, Pimenta M A, Rao A M, Saito R, Liu C, Cheng H M 2000 Phys. Rev. Lett. 85 2617

    [36]

    Saito R, Dresselhaus M S, Dresselhaus G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)

    [37]

    Reich R, Thomsen C 2000 Phys. Rev. B 62 4273

  • [1]

    Dresselhaus M S, Dresselhaus G, Eklund P C, 1996 Science of Fullerenes and Carbon Nanotubes (San Diego: Academic)

    [2]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [3]

    Wang F, Dukovic G, Brus L E, Heinz T F 2005 Science 308 838

    [4]

    Tan P H, Rozhin A G, Hasan T, Hu P, Scardaci V, Milne W I, Ferrari A C 2007 Phys. Rev. Lett. 99 137402

    [5]

    Rao A M, Richter E, Bandow S J, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S 1997 Science 275 187

    [6]

    Charlier J C, Lambin P 1998 Phys. Rev. B 57 R15037

    [7]

    White C T, Mintmire J W 1998 Nature 394 29

    [8]

    Mintmire J W, White C T 1995 Carbon 33 893

    [9]

    Jishi R A, Inomata D, Nakao K, Dresselhaus M S, Dresselhaus G 1994 J. Phys. Soc. Jpn. 63 2252

    [10]

    Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [11]

    Odom T W, Huang J L, Kim P, Leiber C M 1998 Nature 391 62

    [12]

    Pimenta M A, Marucci A, Empedocles S A, Bawendi M G, Hanlon E B, Rao A M, Eklund P C, Smalley R E, Dresselhaus G, Dresselhaus M S 1998 Phys. Rev. B 58 R16016

    [13]

    Rafailov P M, Jantoljak H, Thomsen C 2000 Phys. Rev. B 61 16719

    [14]

    Kataura K, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y 1999 Synth. Met. 103 2555

    [15]

    Xiao Y, Yan X H, Cao J X, Ding J W 2003 Acta. Phys. Sin. 52 1720 (in Chinese)[肖 杨、颜晓红、曹觉先、丁建文 2003 52 1720]

    [16]

    Wu Y Z, Yu P, Wang Y F, Jing Q H, Ding D T, Lan G X 2005 Acta. Phys. Sin. 54 5262 (in Chinese)[吴延昭、于 平、王玉芳、金庆华、丁大同、蓝国祥 2005 54 5262]

    [17]

    Kuzmany H, Burger B, Hulman M, Kurti J 1998 Eu-rophys. Lett. 44 518

    [18]

    Brown S D M, Corio P, Marucci A, Dresselhaus M S, Pimenta M A, Kneipp K 2000 Phys. Rev. B 61 R5137

    [19]

    Kneipp K, Kneipp H, Corio P, Brown S D M, Shafer K, Motz J, Perelman L T, Hanlon E B, Marucci A, Dresselhaus G, Dresselhaus M S 2000 Phys.Rev.Lett. 84 3470

    [20]

    Milnera M, Kürti J, Hulman M, Kuzmany H 2000 Phys.Rev.Lett. 84 1324

    [21]

    Tan P H, Tang Y, Hu C Y, Li F, Wei Y L, Cheng H M 2000 Phys. Rev. B 62 5186

    [22]

    Kürti J, Kresse G, Kuzmany H 1998 Phys. Rev. B 58 R8869

    [23]

    Henrard L, Hernandez E, Bernier P, Rubio A 1999 Phys. Rev. B 60 R8521

    [24]

    Maultzsch J, Telg H, Reich S, Thomsen C 2005 Phys. Rev. B 72 205438

    [25]

    Son H, Reina A, Samsonidze G G, Saito R, Jorio A, Dresselhaus M S, Kong J 2006 Phys. Rev. B 74 073406

    [26]

    Telg H, Maultzsch J, Reich S, Thomsen C 2006 Phys. Rev. B 74 115415

    [27]

    Filho A G S, Chou S G, Samsonidze G G, Dresselhaus G, Dresselhaus M S, Lei A, Liu J, Swan A K, Unlu M S, Goldberg B B, Jorio A, Gruneis A, Saito R 2004 Phys. Rev. B 69 115428

    [28]

    Duesberg G S, Blau W J, Byrne H J, Blau W J, Byrne H J, Muster J, Burghard M, Roth S 1999 Chem. Phys. Lett. 310 8

    [29]

    Thess A, Lee A, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E 1996 Science 273 483

    [30]

    Tan P H, Deng Y M, Zhao Q 1998 Phys. Rev. B 58 5435

    [31]

    Thomsen C, Reich S 2000 Phys.Rev.Lett. 85 5214

    [32]

    Tan P H, Hu C Y, Dong J, Shen W C, Zhang B F 2001 Phys. Rev. B 64 214301

    [33]

    Zhang S L, Hu X H, Li H D, Shi Z J, Yue K T, Zi J, Gu Z N, Wu X H, Lian Z L, Zhan Y, Huang F M, Zhou L X, ZHang Y G, Iijima S 2002 Phys. Rev. B 66 035413

    [34]

    Saito R, Jorio A, Filho A G S, Dresselhaus G, Dresselhaus M S, Pimenta M A 2002 Phys.Rev.Lett. 88 027401

    [35]

    Jorio A, Dresselhaus G, Dresselhaus M S, Souza M, Dantas M S S, Pimenta M A, Rao A M, Saito R, Liu C, Cheng H M 2000 Phys. Rev. Lett. 85 2617

    [36]

    Saito R, Dresselhaus M S, Dresselhaus G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)

    [37]

    Reich R, Thomsen C 2000 Phys. Rev. B 62 4273

  • [1] Wang Tian-Ci, Xia Qian-Shan, Huang Xin-Zuo, Wang Yong-Zheng, Liu Bin, Zhang Jin-Tong, Li Tao. Preparation and properties of single-walled carbon nanotube/polyetherimide electromagnetic shielding film. Acta Physica Sinica, 2024, 73(17): 178101. doi: 10.7498/aps.73.20240822
    [2] Ding Yi, Sheng Lei-Mei. First-principles study of torsional single-walled carbon nanotubes. Acta Physica Sinica, 2023, 72(19): 197302. doi: 10.7498/aps.72.20230566
    [3] Sun Zhi-Wei, He Yan, Tang Yuan-Zheng. Water distribution in confined space of single-wall carbon nanotube. Acta Physica Sinica, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [4] Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng. Resonant Multi-phonon Raman scattering of black phosphorus. Acta Physica Sinica, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [5] Ling Wei-Jun, Xia Tao, Dong Zhong, Zuo Yin-Yan, Li Ke, Liu Qing, Lu Fei-Ping, Zhao Xiao-Long, Wang Yong-Gang. Passively Q-switched mode-locked low threshold Tm, Ho: LLF laser with an single walled carbon nanotubes saturable absorber. Acta Physica Sinica, 2018, 67(1): 014201. doi: 10.7498/aps.67.20171748
    [6] Dong Xin-Zheng, Yu Zhen-Hua, Tian Jin-Rong, Li Yan-Lin, Dou Zhi-Yuan, Hu Meng-Ting, Song Yan-Rong. A 147 fs mode-locked erbium-doped fiber laser with a carbon nanotubes saturable absorber in evanescent field. Acta Physica Sinica, 2014, 63(3): 034202. doi: 10.7498/aps.63.034202
    [7] Wang Sha-Sha, Pan Yu-Zhai, Gao Ren-Xi, Zhu Xiu-Fen, Su Xiao-Hui, Qu Shi-Liang. Mode-locked double-clad fiber laser with a carbon nanotubes saturable absorber. Acta Physica Sinica, 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [8] Li Lun-Xiong, Su Jiang-Bin, Wu Yan, Zhu Xian-Fang, Wang Zhan-Guo. New observations for electron beam-induced instability of single-wall carbon nanotube. Acta Physica Sinica, 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [9] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [10] Hu Hui-Fang, Wang Zhi-Yong, Chen Nan-Ting, Xie Neng, Lin Bing-Bing, Zhang Li-Juan. Effects of nitrogen in Stone-Wales defect on the electronic structure and optical property of single-wall carbon nanotube. Acta Physica Sinica, 2011, 60(7): 077209. doi: 10.7498/aps.60.077209
    [11] Zheng Ji-Ming, Zhao Pei, Chen You-Wei, Ren Zhao-Yu, Guo Ping. Theoretical investigation on electron transport properties of singlewall carbon nanotube with oxygen molecular absorption. Acta Physica Sinica, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [12] Qin Wei, Zhang Zhen-Hua, Liu Xin-Hai. Effects of curvature on the electronic structures of single-walled carbon nanotubes. Acta Physica Sinica, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [13] Wang Zhao-Liang, Liang Jin-Guo, Tang Da-Wei, Y. T. Zhu. Experimental and theoretical study of the length-dependent thermal conductivity of individual single-walled carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3391-3396. doi: 10.7498/aps.57.3391
    [14] Niu Zhi-Qiang, Fang Yan. The effect of composition of the catalysts on the preparation of single-walled carbon nanotubes. Acta Physica Sinica, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [15] Ma Yan-Ping, Shang Xue-Fu, Gu Zhi-Qi, Li Zhen-Hua, Wang Miao, Xu Ya-Bo. The application of single-walled carbon nanotubes in field emission display. Acta Physica Sinica, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [16] Chen Xiang-Lei, Xi Chuan-Ying, Ye Bang-Jiao, Weng Hui-Min. Analysis of positron annihilation lifetime in single-walled carbon nanotube bundles. Acta Physica Sinica, 2007, 56(11): 6695-6700. doi: 10.7498/aps.56.6695
    [17] Liang Jun-Wu, Hu Hui-Fang, Wei Jian-Wei, Peng Ping. Effects of oxygen adsorption on the electronic structure and optical properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [18] Lu Di, Yan Xiao-Hong, Ding Jian-Wen. Electron effective mass of single-wall carbon nanotubes. Acta Physica Sinica, 2004, 53(2): 527-530. doi: 10.7498/aps.53.527
    [19] SUN JIAN-PING, ZHANG ZHAO-XIANG, HOU SHI-MIN, ZHAO XING-YU, SHI ZU-JIN, GU ZHEN-NAN, LIU WEI-MIN, XUE ZENG-QUAN. A STUDY OF FIELD EMISSION OF SINGLE-WALLED CARBONNANOTUBES USING FIELD EMISSION MICROSCOPY. Acta Physica Sinica, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
    [20] HUANG SHI-HUA, MO YU-DONG. RESONANT RAMAN SCATTERING OF Hg1-xCdxTe . Acta Physica Sinica, 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
Metrics
  • Abstract views:  9863
  • PDF Downloads:  843
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2010
  • Accepted Date:  16 March 2010
  • Published Online:  15 November 2010

/

返回文章
返回
Baidu
map