搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共焦腔增强的空气拉曼散射

李斌 罗时文 余安澜 熊东升 王新兵 左都罗

引用本文:
Citation:

共焦腔增强的空气拉曼散射

李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗

Confocal-cavity-enhanced Raman scattering of ambient air

Li Bin, Luo Shi-Wen, Yu An-Lan, Xiong Dong-Sheng, Wang Xin-Bing, Zuo Du-Luo
PDF
导出引用
  • 拉曼光谱是一种无损、快速的物质成分分析和检测方法.由于拉曼信号强度微弱,使得拉曼光谱的检测应用受到极大的限制.针对增强拉曼散射信号强度、提高检测灵敏度这一问题,设计了一种用于自发拉曼散射信号增强的共焦腔样品池,开展了基于该共焦腔的空气拉曼散射信号增强研究.共焦腔的腔镜反射率为92%,这一设计在保证共焦腔通带宽度与激光器线宽匹配的同时能有效地降低共振调节难度.实验中采用0o探测构型收集拉曼信号,并由成像式拉曼光谱仪获取光谱信号.实验发现,在共振状态下,共焦腔的耦合效率达到87.5%,单向激光功率实现约11倍放大;与无共振腔相比,共焦腔对拉曼信号实现17倍放大,信噪比提高2倍.此外,空气中CO2的3检测限达到200 ppm量级.结果表明,该系统对自发拉曼散射信号增强效果显著,并且有较高的检测灵敏度.
    Raman spectroscopy is a powerful diagnostic method for gas analysis due to its advantages like non-invasiveness and fast speed. However, its applications are greatly restricted because of the weak signal level caused by small scattering cross section. In order to enhance the Raman signal level and improve the detection sensitivity, a sample cell of confocal cavity is designed and the enhanced Raman signal of ambient air based on this cavity is demonstrated experimentally. The confocal cavity is constructed with a pair of plano-concave reflectors with a curvature radius of 150 mm and reflectivity of 92%. This low reflectivity design not only allows for bandwidth matching with the line-width of excitation laser but also makes the resonant condition satisfied easily. The measured output power of the confocal cavity is over 42 mW in resonant condition, which gives a coupling efficiency of 87.5% when divided with the input power 48 mW. The high coupling efficiency enables the output power efficiently to reach 11 times that for the intra-cavity laser power in one direction. Raman scattering of ambient air is tested to verify the performance of the confocal cavity. In our experiments, the Raman signals are collected in a forward scattering configuration by an imaging Raman spectrometer which is connected to a CCD camera. Strong Raman signals of O2 and N2, even H2O are observed with 1 s exposure time in resonant condition, and rotational lines (O-branch and S-branch) of O2 and N2 are also clearly detected when exposure time is set to be 10 s. Compared with the results obtained without confocal cavity, the Raman signal level is enhanced 17 times and the signal-to-noise ratio is improved twice. In addition, a limit of detection (3) at a magnitude of 200 ppm for CO2 in ambient air is achieved for the resonant confocal cavity. These results indicate that the system can significantly enhance the spontaneous Raman scattering signal level and improve the detection sensitivity. Furthermore, the confocal cavity is applicable to the Raman analyses of other gas samples.
      通信作者: 左都罗, zuoduluo@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61675082)资助的课题.
      Corresponding author: Zuo Du-Luo, zuoduluo@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675082).
    [1]

    Zhang L, Zheng H Y, Wang Y P, Ding L, Fang L 2016 Acta Phys. Sin. 65 054206 (in Chinese)[张莉, 郑海洋, 王颖萍, 丁蕾, 方黎 2016 65 054206]

    [2]

    Buldakov M A, Korolkov V A, Matrosov I I, Petrov D V, Tikhomirov A A 2013 J. Opt. Technol. 80 426

    [3]

    Jochum T, Fischer J C, Trumbore S, Popp J, Frosch T 2015 Anal. Chem. 87 11137

    [4]

    Schlter S, Krischke F, Popovska-Leipertz N, Seeger T, Breuer G, Jeleazcov C, Schttler J, Leipertz A 2015 J. Raman Spectrosc. 46 708

    [5]

    Shreve A P, Cherepy N J, Mathies R A 1992 Appl. Spectrosc. 46 707

    [6]

    Troyanova-Wood M A, Petrov G I, Yakovlev V V 2013 J. Raman Spectrosc. 44 1789

    [7]

    Son H 2013 Sensors and Actuators B:Chemical 176 64

    [8]

    Yang X, Chang A S P, Chen B, Gu C, Bondet T C 2013 Sensors and Actuators B: Chemical 176 64

    [9]

    Guo J J, Yang D W, Liu C H 2016 Spectrosc. Spect. Anal. 36 96 (in Chinese) [郭金家, 杨德旺, 刘春昊 2016 光谱学与光谱分析 36 96]

    [10]

    Yu A L, Zuo D L, Li B, Gao J, Wang X B 2016 Appl. Opt. 55 3650

    [11]

    Rupp S, Off A, Seitz-Moskaliuk H, James M T, Telle H H 2015 Sensors 15 23110

    [12]

    Utsav K, Silver J A, Hovde D C, Varghese P L 2011 Appl. Opt. 50 4805

    [13]

    Hill R A, Hartley D L 1974 Appl. Opt. 13 186

    [14]

    Li X Y, Xia Y X, Zhan L, Huang J M 2008 Opt. Lett. 33 2143

    [15]

    Yang D W, Guo J J, Du Z F, Wang Z N, Zheng R E 2015 Spectrosc. Spect. Anal. 35 645 (in Chinese) [杨德旺, 郭金家, 杜增丰, 王振南, 郑荣儿 2015 光谱学与光谱分析 35 645]

    [16]

    Li X Y, Xia Y X, Huang J M, Zhan L 2008 Chin. Phys. Lett. 25 3326

    [17]

    King D A, Pittaro R J 1998 Opt. Lett. 23 774

    [18]

    Thorstensen J, Haugholt K H, Ferber A, Bakke K A H, Tschudi J 2014 J. Europ. Opt. Soc. Rap. Public. 9 14054

    [19]

    Salter R, Chu J, Hippler M 2012 Analyst 137 4669

    [20]

    Karpf A, Rao G N 2015 Appl. Opt. 54 6085

    [21]

    Zuo D L, Yu A L, Li Z, Wang X B, Xiong Y H 2015 Proc. of SPIE 9611 Imaging Spectrometry XX San Diego, California, United States, August 9, 2015 96110N-19

    [22]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (Second Edition) (Hoboken: Wiley-Interscience)pp394395

    [23]

    Barnes J A, Gough T E, Stoer M 1999 Rev. Sci. Instrum. 70 3515

    [24]

    Hanf S, Keiner R, Yan D, Popp J, Frosch T 2014 Anal. Chem. 86 5278

    [25]

    Zhang S G, Hu S X, Lin J M, Shao S S, Cao K F, Huang J, Xu Z H 2014 Infrared Laser Eng. 43 1135 (in Chinese) [张世国, 胡顺星, 林金明, 邵石生, 曹开法, 黄见, 徐之海 2014 红外与激光工程 43 1135]

  • [1]

    Zhang L, Zheng H Y, Wang Y P, Ding L, Fang L 2016 Acta Phys. Sin. 65 054206 (in Chinese)[张莉, 郑海洋, 王颖萍, 丁蕾, 方黎 2016 65 054206]

    [2]

    Buldakov M A, Korolkov V A, Matrosov I I, Petrov D V, Tikhomirov A A 2013 J. Opt. Technol. 80 426

    [3]

    Jochum T, Fischer J C, Trumbore S, Popp J, Frosch T 2015 Anal. Chem. 87 11137

    [4]

    Schlter S, Krischke F, Popovska-Leipertz N, Seeger T, Breuer G, Jeleazcov C, Schttler J, Leipertz A 2015 J. Raman Spectrosc. 46 708

    [5]

    Shreve A P, Cherepy N J, Mathies R A 1992 Appl. Spectrosc. 46 707

    [6]

    Troyanova-Wood M A, Petrov G I, Yakovlev V V 2013 J. Raman Spectrosc. 44 1789

    [7]

    Son H 2013 Sensors and Actuators B:Chemical 176 64

    [8]

    Yang X, Chang A S P, Chen B, Gu C, Bondet T C 2013 Sensors and Actuators B: Chemical 176 64

    [9]

    Guo J J, Yang D W, Liu C H 2016 Spectrosc. Spect. Anal. 36 96 (in Chinese) [郭金家, 杨德旺, 刘春昊 2016 光谱学与光谱分析 36 96]

    [10]

    Yu A L, Zuo D L, Li B, Gao J, Wang X B 2016 Appl. Opt. 55 3650

    [11]

    Rupp S, Off A, Seitz-Moskaliuk H, James M T, Telle H H 2015 Sensors 15 23110

    [12]

    Utsav K, Silver J A, Hovde D C, Varghese P L 2011 Appl. Opt. 50 4805

    [13]

    Hill R A, Hartley D L 1974 Appl. Opt. 13 186

    [14]

    Li X Y, Xia Y X, Zhan L, Huang J M 2008 Opt. Lett. 33 2143

    [15]

    Yang D W, Guo J J, Du Z F, Wang Z N, Zheng R E 2015 Spectrosc. Spect. Anal. 35 645 (in Chinese) [杨德旺, 郭金家, 杜增丰, 王振南, 郑荣儿 2015 光谱学与光谱分析 35 645]

    [16]

    Li X Y, Xia Y X, Huang J M, Zhan L 2008 Chin. Phys. Lett. 25 3326

    [17]

    King D A, Pittaro R J 1998 Opt. Lett. 23 774

    [18]

    Thorstensen J, Haugholt K H, Ferber A, Bakke K A H, Tschudi J 2014 J. Europ. Opt. Soc. Rap. Public. 9 14054

    [19]

    Salter R, Chu J, Hippler M 2012 Analyst 137 4669

    [20]

    Karpf A, Rao G N 2015 Appl. Opt. 54 6085

    [21]

    Zuo D L, Yu A L, Li Z, Wang X B, Xiong Y H 2015 Proc. of SPIE 9611 Imaging Spectrometry XX San Diego, California, United States, August 9, 2015 96110N-19

    [22]

    Saleh B E A, Teich M C 2007 Fundamentals of Photonics (Second Edition) (Hoboken: Wiley-Interscience)pp394395

    [23]

    Barnes J A, Gough T E, Stoer M 1999 Rev. Sci. Instrum. 70 3515

    [24]

    Hanf S, Keiner R, Yan D, Popp J, Frosch T 2014 Anal. Chem. 86 5278

    [25]

    Zhang S G, Hu S X, Lin J M, Shao S S, Cao K F, Huang J, Xu Z H 2014 Infrared Laser Eng. 43 1135 (in Chinese) [张世国, 胡顺星, 林金明, 邵石生, 曹开法, 黄见, 徐之海 2014 红外与激光工程 43 1135]

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构.  , 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究.  , 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [3] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究.  , 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底.  , 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法.  , 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [6] 李满, 戴志高, 应见见, 肖湘衡, 岳亚楠. 基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究.  , 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [7] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率.  , 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [8] 任秀云, 田兆硕, 孙兰君, 付石友. 激光波长对拉曼散射水温遥感系统测温精度及探测深度的影响.  , 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [9] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺. 单组分双分析通道红外气体检测方法研究.  , 2012, 61(14): 140704. doi: 10.7498/aps.61.140704
    [10] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术.  , 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [11] 钟文武, 刘发民, 蔡鲁刚, 丁芃, 柳学全, 李一. Al和Sb共掺对ZnO有序阵列薄膜的结构和光学性能的影响.  , 2011, 60(11): 118102. doi: 10.7498/aps.60.118102
    [12] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究.  , 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [13] 胡 妮, 熊 锐, 魏 伟, 王自昱, 汪丽莉, 余祖兴, 汤五丰, 石 兢. 自旋梯状化合物Sr14(Cu1-yFey)24O41的拉曼散射谱研究.  , 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [14] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响.  , 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [15] 刘国汉, 丁 毅, 朱秀红, 陈光华, 贺德衍. HW-MWECR-CVD法制备氢化微晶硅薄膜及其微结构研究.  , 2006, 55(11): 6147-6151. doi: 10.7498/aps.55.6147
    [16] 曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈 静, 沈文忠. 分子束外延PbTe单晶薄膜的反常拉曼光谱研究.  , 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [17] 成 泽. 压电晶体拉曼散射的统一量子论.  , 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [18] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算.  , 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [19] 张喜和, 姚治海, 李晓英, 李春明, 冯克成, 王兆民. 高保偏光纤前方受激拉曼散射光谱特性的研究.  , 2003, 52(4): 840-843. doi: 10.7498/aps.52.840
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究.  , 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  7147
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-06-15
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map