-
In order to improve the efficiency of wireless power transfer (WPT) system, the spatial fields are regulated on a two-non-resonant-coil WPT system by hexagon artificial magnetic conductors (AMC). In our configuration, the AMC is located by the side of the two-non-resonant-coil WPT system and close to the transmitter coil. The AMC structure consists of small hexagon copper patches periodically arranged on the dielectric substrate. Each patch is grounded by a via passing through its center hole. Chip capacitors are soldered in the gaps between the adjacent patches. We can design the working frequency of WPT system through the capacitance of these chip capacitors. The results show that the electromagnetic fields are changed between the transmitter coil and the receiver coil in WPT system due to the introducing of the AMC structure. There are two main reasons. First, many resonant modes are excited by near magnetic fields on the AMC structure. Second, near magnetic fields are shielded by the AMC structure. The variation of space electromagnetic field improves the transmission efficiency of WPT system. When the working frequency is 27 MHz and the transmission distance is 3 cm, the experiment verifies that the transmission efficiency increases by 22% in the WPT system with the AMC structure compared with the WPT system without the AMC structure. Simultaneously, the transmission efficiency is raised by 25% at different transmission distances. The simulation results are almost consistent with the experimental results. There is a little difference that the number of resonant modes is different between the simulation and the experiment due to the resistance loss of the chip capacitors in experiment. Therefore, we correct the simulation results under consideration of resistive loss. In addition, the excited multiple resonant modes can supply multiple and adjustable working frequencies in the WPT system with the AMC structure. In practical applications, AMC is low in cost and easy to implement.
-
Keywords:
- artificial microstructure materials /
- artificial magnetic conductors /
- wireless power transfer
[1] Ejaz W, Naeem M, Shahid A, Anpalagan A, Jo M 2017 IEEE Commun. Mag. 55 84
[2] Lu X, Wang P, Niyato D, Kim D I, Han Z 2016 IEEE Commun. Surv. Tut. 18 1413
Google Scholar
[3] RamRakhyani A K, Mirabbasi S, Chiao M 2011 IEEE Trans. Biomed. Circ. S. 5 48
Google Scholar
[4] Hoang H, Lee S, Kim Y, Choi Y, Bien F 2012 IEEE Trans. Consum. Electr. 58 327
Google Scholar
[5] Li S, Mi C C 2015 IEEE J. Em. Sel.Top. P. 3 4
Google Scholar
[6] Xie L, Shi Y, Hou Y T, Sherali H D 2012 IEEE Acm. Trans. Netw. 20 1748
Google Scholar
[7] Tesla N 1914 U. S. Patent 1 119 732
[8] Brown W C 1984 IEEE Trans. Microw. Theory 32 1230
Google Scholar
[9] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83
Google Scholar
[10] Song M, Belov P, Kapitanova P 2017 Appl. Phys. Rev. 4 021102
Google Scholar
[11] Wang B, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J 2011 Appl. Phys. Lett. 98 254101
Google Scholar
[12] Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N, Xie P, Wang Z, Fan G, Liu H, Liu C, Li T, Yan C, Guo Z 2018 J. Mater. Chem. C 6 2925
Google Scholar
[13] Urzhumov Y, Smith D R 2011 Phys. Rev. B 83 205114
Google Scholar
[14] Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359
Google Scholar
[15] Lipworth G, Ensworth J, Seetharam K, Huang D, Lee J S, Schmalenberg P, Nomura T, Reynolds M S, Smith D R, Urzhumov Y 2014 Sci. Rep. 4 3642
[16] Huang D, Urzhumov Y, Smith D R, Teo K H, Zhang J 2012 J. Appl. Phys. 111 064902
Google Scholar
[17] Ranaweera A L A K, Thuc Phi D, Lee J W 2014 J. Appl. Phys. 116 043914
Google Scholar
[18] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1
Google Scholar
[19] Lapine M, Tretyakov S 2007 IET Microw. Antenn. P. 1 3
[20] Sievenpiper D, Zhang L J, Broas R F J, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory 47 2059
Google Scholar
[21] Radi Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001
Google Scholar
[22] Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antenn. Propag. 58 1551
Google Scholar
[23] Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antenn. Propag. 56 1624
Google Scholar
[24] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204
Google Scholar
Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204
Google Scholar
[25] Wu J, Wang B, Yerazunis W S, Teo K H 2013 2013 IEEE Wireless Power Transfer Conference Perugia, Italy, May 15-16, 2013 p155
[26] Lawson J, Yates D C, Mitcheson P D 2015 2015 IEEE Wireless Power Transfer Conference Boulder, USA, May 13−15, 2015 p1
-
-
[1] Ejaz W, Naeem M, Shahid A, Anpalagan A, Jo M 2017 IEEE Commun. Mag. 55 84
[2] Lu X, Wang P, Niyato D, Kim D I, Han Z 2016 IEEE Commun. Surv. Tut. 18 1413
Google Scholar
[3] RamRakhyani A K, Mirabbasi S, Chiao M 2011 IEEE Trans. Biomed. Circ. S. 5 48
Google Scholar
[4] Hoang H, Lee S, Kim Y, Choi Y, Bien F 2012 IEEE Trans. Consum. Electr. 58 327
Google Scholar
[5] Li S, Mi C C 2015 IEEE J. Em. Sel.Top. P. 3 4
Google Scholar
[6] Xie L, Shi Y, Hou Y T, Sherali H D 2012 IEEE Acm. Trans. Netw. 20 1748
Google Scholar
[7] Tesla N 1914 U. S. Patent 1 119 732
[8] Brown W C 1984 IEEE Trans. Microw. Theory 32 1230
Google Scholar
[9] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83
Google Scholar
[10] Song M, Belov P, Kapitanova P 2017 Appl. Phys. Rev. 4 021102
Google Scholar
[11] Wang B, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J 2011 Appl. Phys. Lett. 98 254101
Google Scholar
[12] Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N, Xie P, Wang Z, Fan G, Liu H, Liu C, Li T, Yan C, Guo Z 2018 J. Mater. Chem. C 6 2925
Google Scholar
[13] Urzhumov Y, Smith D R 2011 Phys. Rev. B 83 205114
Google Scholar
[14] Wang B, Yerazunis W, Teo K H 2013 Proc. IEEE 101 1359
Google Scholar
[15] Lipworth G, Ensworth J, Seetharam K, Huang D, Lee J S, Schmalenberg P, Nomura T, Reynolds M S, Smith D R, Urzhumov Y 2014 Sci. Rep. 4 3642
[16] Huang D, Urzhumov Y, Smith D R, Teo K H, Zhang J 2012 J. Appl. Phys. 111 064902
Google Scholar
[17] Ranaweera A L A K, Thuc Phi D, Lee J W 2014 J. Appl. Phys. 116 043914
Google Scholar
[18] Glybovski S B, Tretyakov S A, Belov P A, Kivshar Y S, Simovski C R 2016 Phys. Rep. 634 1
Google Scholar
[19] Lapine M, Tretyakov S 2007 IET Microw. Antenn. P. 1 3
[20] Sievenpiper D, Zhang L J, Broas R F J, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory 47 2059
Google Scholar
[21] Radi Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001
Google Scholar
[22] Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antenn. Propag. 58 1551
Google Scholar
[23] Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antenn. Propag. 56 1624
Google Scholar
[24] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204
Google Scholar
Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204
Google Scholar
[25] Wu J, Wang B, Yerazunis W S, Teo K H 2013 2013 IEEE Wireless Power Transfer Conference Perugia, Italy, May 15-16, 2013 p155
[26] Lawson J, Yates D C, Mitcheson P D 2015 2015 IEEE Wireless Power Transfer Conference Boulder, USA, May 13−15, 2015 p1
Catalog
Metrics
- Abstract views: 9478
- PDF Downloads: 73
- Cited By: 0