搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在人工拓扑超导体磁通涡旋中寻找Majorana零能模

李耀义 贾金锋

引用本文:
Citation:

在人工拓扑超导体磁通涡旋中寻找Majorana零能模

李耀义, 贾金锋

Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor

Li Yao-Yi, Jia Jin-Feng
PDF
HTML
导出引用
  • 寻找具有拓扑序的新物质态是目前一个非常活跃和令人激动的研究领域. 与拓扑绝缘体类似, 在超导体中也存在着拓扑非平庸的超导态, 它与传统的超导体在拓扑性上是不等价的, 这种具有非平庸拓扑序的超导体被称为拓扑超导体. 拓扑超导体在体内具有非零的超导能隙, 而在表面有无能隙的表面态. 理论预言在拓扑超导体中能够实现具有非Abelian 统计特性的Majorana费米子. Majorana费米子可以用来构建拓扑量子比特, 在拓扑量子计算方面有重大的科研和应用前景. 拓扑绝缘体的出现催生出了许多人工拓扑超导体材料. 本专题将主要介绍在拓扑绝缘体/超导体异质结中探测Majorana费米子的一系列实验工作. 通过对拓扑超导体的研究, 人们对超导电性有了全新的认识, 有可能找到实现Majorana费米子新奇量子物理性质的方法.
    The search for new states that exhibit topological order is currently a very active and exciting area of research. Like a topological insulator, superconducting order can also exhibit topological order, which is different from that of a conventional superconductor. This superconductor is so-called " topological superconductor”, which has a full pairing gap in the bulk and gapless surface state. Majorana Fermions obey non-Abelian fractional statistics, and have been proposed to construct topological qubits, so there is a great prospect of scientific research and application in topological quantum computing. It is very interesting that Majorana Fermions are predicted to exist in topological superconductors. However, natural topological superconductor is very rare. Inspired by the realization of topological insulators, theoretical physicists have proposed that via the fabrication of the s-wave superconductor/topological insulator heterostructure, Majorana Fermions may exist in the superconducting topological insulator induced by proximate effect. Due to various kinds of topological insulators and conventional s-wave superconductors, heterostructures constructed by this method can greatly increase the variety of artificial topological superconductors. In this paper we review the experimental progress in the heterostructure composed of the Bi2Te3-type topological insulator and the conventional s-wave superconductor NbSe2. Using molecular beam epitaxy, atomically flat topological insulator film can be fabricated at the top of superconductor substrate. The spatial distribution of Majorana Fermions on the surface of topological insulator can be directly observed by in situ scanning tunneling microscopy/spectroscopy. In the center of a magnetic vortex, Majorana Fermions will appear as the Majorana zero mode, a zero-energy peak inside the superconducting gap. Although the energy gap between low energy quasiparticle excitation and the Majorana zero mode is very small, the evidences such as zero bias conductance anomaly, Y-shape splitting of zero-bias conductance, spin-selective Andreev reflection are self-consistent and reveal that the Majorana zero mode exists in the center of a magnetic vortex. These experiments have led to a new insight into superconductivity. It may open a door to probing the novel physics of Majorana fermions.
      通信作者: 李耀义, yaoyili@sjtu.edu.cn ; 贾金锋, jfjia@sjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0301003, 2016YFA0300403)、国家自然科学基金(批准号: 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201, U1632272, 11655002)和中国科学院战略性先导科技专项(B类)(批准号: XDB28000000)资助的课题.
      Corresponding author: Li Yao-Yi, yaoyili@sjtu.edu.cn ; Jia Jin-Feng, jfjia@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0301003, 2016YFA0300403), the National Natural Science Foundation of China (Grant Nos. 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201, U1632272, 11655002), and the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB28000000).
    [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [4]

    Kitaev A 2003 Ann. Phys. 303 2Google Scholar

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [6]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [7]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [8]

    Beenakker C W J 2013 Annu. Rev. Condens. Mattter Phys. 4 113Google Scholar

    [9]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [11]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [12]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [13]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [14]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [15]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [16]

    Linder J, Tanaka Y, Yokoyama T, Sudbo A, Nagaosa N 2010 Phys. Rev. Lett. 104 067001Google Scholar

    [17]

    Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001Google Scholar

    [18]

    Kriener M, Segawa K, Ren Z, Sasaki S, Ando Y 2011 Phys. Rev. Lett. 106 127004Google Scholar

    [19]

    Sasaki S, Kriener M, Segawa K., Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001Google Scholar

    [20]

    Levy N, Zhang T, Ha J, Sharifi F, Alec Talin A, Kuk Y, Stroscio J A 2013 Phys. Rev. Lett. 110 117001Google Scholar

    [21]

    Liu Z H, Yao X, Shao J F, Zuo M, Po L, Tan S, Zhang C J, Zhang Y H 2015 J. Am. Chem. Soc. 137 10512Google Scholar

    [22]

    Maurya S V K, Neha P, Srivastava P, Patnaik S 2015 Phys. Rev. B 92 020506Google Scholar

    [23]

    Lawson B J, Corbae P, Li G, Yu F, Asaba T, Tinsman C, Qiu Y, Medvedeva J E, Hor Y S, Li L 2016 Phys. Rev. B 94 041114Google Scholar

    [24]

    Smylie M P, Claus H, Welp U, Kwok W K, Qiu Y, Hor Y S, Snezhko A 2016 Phys. Rev. B 94 180510Google Scholar

    [25]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar

    [26]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. U.S.A. 108 24Google Scholar

    [27]

    Zhang C, Sun L, Chen Z, Zhou X, Wu Q, Yi W, Guo J, Dong X, Zhao Z 2011 Phys. Rev. B 83 140504Google Scholar

    [28]

    Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K, Paglione J 2013 Phys. Rev. Lett. 111 087001Google Scholar

    [29]

    Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S, Jin C Q 2013 Sci. Rep. 3 2016Google Scholar

    [30]

    Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [31]

    Xu J P, Liu C H, Wang M X, Ge J F, Liu Z L, Yang X J, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [32]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [33]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [34]

    Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, Lu L 2012 Sci. Rep. 2 339Google Scholar

    [35]

    Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, Yacoby A 2014 Nat. Phys. 10 638Google Scholar

    [36]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [37]

    Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C, Wegscheider W, Kouwenhoven L P 2015 Nat. Nanotechnol. 10 593Google Scholar

    [38]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [39]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [40]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [41]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [42]

    Koma A 1999 J. Cryst. Growth 201 236

    [43]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [44]

    Meerschaut A, Deudon C 2001 Mater. Res. Bull. 36 1721Google Scholar

    [45]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [46]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar

    [47]

    Park K, Heremans J J, Scarola V W, Minic D 2010 Phys. Rev. Lett. 105 186801Google Scholar

    [48]

    Liu Y, Bian G, Miller T, Bissen M, Chiang T C 2012 Phys. Rev. B 85 195442Google Scholar

    [49]

    Black-Schaffer A M, Balatsky A V 2013 Phys. Rev. B 87 220506Google Scholar

    [50]

    Tkachov G 2013 Phys. Rev. B 87 245422Google Scholar

    [51]

    Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W Q, Li Q, Gilbert M J, Chou F C, Samarth N, Hasan M Z 2014 Nat. Phys. 10 943Google Scholar

    [52]

    Hess H F, Robinson R B, Dynes R C, Valles J M, Waszczak J V 1989 Phys. Rev. Lett. 62 214Google Scholar

    [53]

    Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J, Fischer O 2002 Phys. Rev. Lett. 89 187003Google Scholar

    [54]

    Sonier J E, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S R, MacFarlane W A, Miller R I, Wong A, Luke G M, Brill J W 1997 Phys. Rev. Lett. 79 1742Google Scholar

    [55]

    Miller R I, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S, Morris G D, Sonier J E, MacFarlane W A 2000 Phys. Rev. Lett. 85 1540Google Scholar

    [56]

    Chiu C K, Gilbert M J, Hughes T L 2011 Phys. Rev. B 84 144507Google Scholar

    [57]

    Gygi F, Schluter M 1991 Phys. Rev. B 43 7609Google Scholar

    [58]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [59]

    He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar

    [60]

    Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar

    [61]

    Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar

    [62]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [63]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [64]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [65]

    Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar

    [66]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403Google Scholar

    [67]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [68]

    Burnell F J, Shnirman A, Oreg Y 2013 Phys. Rev. B 88 224507Google Scholar

    [69]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [70]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [71]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar

  • 图 1  (a)在NbSe2衬底上生长的Bi2Se3薄膜的形貌; (b)Bi2Se3/NbSe2异质结示意图; (c)NbSe2衬底表面的原子分辨STM图; (d) Bi2Se3薄膜表面的原子分辨STM图[30]

    Fig. 1.  (a) Morphology of Bi2Se3 thin films grown on NbSe2 substrate; (b) schematic diagram of the Bi2Se3/NbSe2 heterostructure; (c) atomically resolved STM image of the NbSe2 substrate; (d) atomically resolved STM image of the Bi2Se3 film[30].

    图 2  在Bi2Se3/NbSe2上探测的超导能隙[30] (a) 4.2 K和 (b) 0.4 K温度下3 QL厚的Bi2Se3薄膜的dI/dV谱; (c) 4.2 K和 (d) 0.4 K温度下6 QL厚的Bi2Se3薄膜的dI/dV

    Fig. 2.  Superconducting energy gap detected in Bi2Se3 thin films grown on NbSe2 substrate[30]: dI/dV spectra measured on 3 QL Bi2Se3 films at (a) 4.2 K and (b) 0.4 K; dI/dV spectra measured on 6 QL Bi2Se3 films at (c) 4.2 K and (d) 0.4 K.

    图 3  厚度为 (a) 3 QL, (b) 6 QL, (c) 9 QL, (d) 12 QL 的Bi2Se3/NbSe2的能带结构[30]

    Fig. 3.  Band structure of (a) 3 QL, (b) 6 QL, (c) 9 QL, (d) 12 QL Bi2Se3 thin films grown on NbSe2 substrate[30].

    图 4  (a)在NbSe2衬底上生长的Bi2Te3薄膜的形貌; (b) 2 QL, (c) 3 QL, (d) 5 QL Bi2Te3/NbSe2在4.2 K温度下测得的dI/dV[31]

    Fig. 4.  (a) Morphology of Bi2Te3 thin films grown on NbSe2 substrate; dI/dV spectra measured at 4.2 K on (b) 2 QL, (c) 3 QL, (d) 5 QL Bi2Te3/NbSe2[31].

    图 5  在Bi2Te3/NbSe2上探测的超导能隙[31] (a)各种厚度的Bi2Te3薄膜上测得的超导能隙; (b)在NbSe2衬底, 2 QL以及3 QL Bi2Te3/NbSe2上测得的超导能隙; (c)超导能隙随厚度的变化, 插图为3 QL Bi2Se3/NbSe2的超导能隙. 这些dI/dV谱都是在0.4 K温度下测量的

    Fig. 5.  Superconducting energy gap observed on Bi2Te3/NbSe2[31]: (a) A series of dI/dV spectra taken on different thicknesses of Bi2Te3 thin films at 0.4 K; (b) dI/dV spectra taken on pristine NbSe2, 2 QL, and 3 QL Bi2Te3/NbSe2; (c) thickness dependence of the superconducting energy gap; Inset is the dI/dV spectra measured at 0.4 K on 3 QL Bi2Se3/NbSe2.

    图 6  (a) 12 K时测得的4 QL Bi2Se3/NbSe2的能带结构, 入射光子能量为18 eV; 4 QL 厚的Bi2Se3/NbSe2在 (b) k1和 (c) k2处的ARPES谱随温度的变化关系; (d) 12 K时测得的7 QL Bi2Se3/NbSe2的能带结构, 入射光子能量为18 eV; 7 QL 厚的Bi2Se3/NbSe2在 (e) k1和(f) k2处的ARPES谱随温度的变化关系[51]

    Fig. 6.  (a) Band structure of a 4 QL Bi2Se3/NbSe2 measured at 12 K using an incident photon energy of 18 eV; Temperature dependence of ARPES spectra at (b) k1 and (c) k2 indicated in Fig. (a); (d) Band structure of a 7 QL Bi2Se3/NbSe2 measured at 12 K using an incident photon energy of 18 eV; Temperature dependence of ARPES spectra at (e) k1 and (f) k2 indicated in Fig. (d)[51].

    图 7  在0.4 K和0.75 T下在 (a) NbSe2和 (b) 3 QL Bi2Te3/NbSe2上的零偏压电导的映射图; 在 (c) NbSe2和 (d) 5 QL Bi2Te3/NbSe2上单个涡旋的零偏压电导的映射图[31]

    Fig. 7.  Large-scale zero-bias dI/dV maps measured at 0.4 K and 0.75 T on (a) NbSe2 and (b) 3 QL Bi2Te3/NbSe2; Zero-bias dI/dV maps for a single vortex measured at 0.4 K and 0.1 T on (c) NbSe2 and (d) 5 QL Bi2Te3/NbSe2[31].

    图 8  (a)在0.4 K和0.1 T下在NbSe2和3 QL Bi2Te3/NbSe2上得到的穿过涡旋中心的零偏压电导轮廓图; (b) Bi2Te3/NbSe2的超导相干长度与薄膜厚度的依赖关系; (c) 5 QL Bi2Te3/NbSe2的超导相干长度与磁场强度的依赖关系[31]

    Fig. 8.  (a) Normalized ZBC profiles crossing through the centers of vortices at 0.4 K and 0.1 T on NbSe2 and 3 QL Bi2Te3/NbSe2; (b) thickness dependence of the coherence length; (c) the coherence length as a function of the magnetic field measured on 5 QL Bi2Te3/NbSe2[31].

    图 9  (a) 5 QL Bi2Te3/NbSe2, (b) NbSe2, (c) 2 QL Bi2Te3/NbSe2单个涡旋中心处的dI/dV谱随磁场强度的变化关系[32]

    Fig. 9.  Magnetic field-dependent dI/dV spectra taken at a vortex center of (a) 5 QL Bi2Te3/NbSe2, (b) pristine NbSe2, and (c) 2 QL Bi2Te3/NbSe2[32].

    图 10  (a)在0.4 K和0.1 T下在5 QL Bi2Te3/NbSe2上单个涡旋的零偏压电导映射图; (b)沿着图(a)中虚线方向做的一系列随空间演化的dI/dV[32]

    Fig. 10.  (a) A vortex mapped by zero bias dI/dV on 5 QL Bi2Te3/NbSe2 at 0.1 T and 0.4 K; (b) spatially resolved dI/dV spectra taken along the dashed line in Fig. (a)[32].

    图 11  (a) 1 QL, (b) 2 QL, (c) 3 QL, (d) 4 QL, (e) 5 QL, (f) 6 QL Bi2Te3/NbSe2在0.10 T外加磁场下测得的涡旋中束缚态随空间演化的dI/dV谱强度图[32]

    Fig. 11.  Spatially resolved bound states within a vortex at 0.10 T in (a) 1 QL, (b) 2 QL, (c) 3 QL, (d) 4 QL, (e) 5 QL, (f) 6 QL Bi2Te3/NbSe2 heterostructures[32].

    图 12  (a)在0.10 T外加磁场下5 QL Bi2Te3/NbSe2的单个涡旋中心处束缚态随空间演化的dI/dV谱强度图; (b)在0.18 T外加磁场下5 QL Bi2Te3/NbSe2的单个涡旋中心处束缚态随空间演化的dI/dV谱强度图, 束缚态从一开始就发生劈裂, 这与图(a)形成鲜明的对比[32]

    Fig. 12.  (a) Spatially resolved bound states within a vortex at 0.10 T in the 5 QL Bi2Te3/NbSe2 heterostructures; (b) spatially resolved bound states within a vortex at 0.18 T in the 5 QL Bi2Te3/NbSe2 heterostructures. The peak-splitting start point is zero, in sharp contrast to that in Fig. (a)[32].

    图 13  (a)拓扑超导体5 QL Bi2Te3/NbSe2在0.1 T外加磁场下磁通涡旋的零偏压dI/dV映射图; (b)在磁通涡旋中心用自旋极化的针尖测得的dI/dV谱; (c)在离磁通涡旋中心10 nm远的地方用自旋极化的针尖测得的dI/dV[33]

    Fig. 13.  (a) Zero bias dI/dV mapping of a vortex at 0.1 T on the topological superconductor 5 QL Bi2Te3/NbSe2. (b) dI/dV at the vortex center measured with a fully spin polarized tip. (c) dI/dV at 10 nm away from the center measured with a fully spin polarized tip[33].

    图 14  用自旋极化的针尖在磁通涡旋中心测得的dI/dV[33] (a) 3 QL Bi2Te3/NbSe2, B = 0.1 T; (b) NbSe2, B = 0.1 T; (c) 5 QL Bi2Te3/NbSe2, B = 0.22 T

    Fig. 14.  dI/dV curves at the center of a vortex core measured with a fully spin polarized tip[33]: (a) 3 QL Bi2Te3/NbSe2, B = 0.1 T; (b) Bare NbSe2, B = 0.1 T; (c) 5 QL Bi2Te3/NbSe2, B = 0.22 T.

    Baidu
  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [4]

    Kitaev A 2003 Ann. Phys. 303 2Google Scholar

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [6]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [7]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [8]

    Beenakker C W J 2013 Annu. Rev. Condens. Mattter Phys. 4 113Google Scholar

    [9]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [11]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [12]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [13]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [14]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [15]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [16]

    Linder J, Tanaka Y, Yokoyama T, Sudbo A, Nagaosa N 2010 Phys. Rev. Lett. 104 067001Google Scholar

    [17]

    Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001Google Scholar

    [18]

    Kriener M, Segawa K, Ren Z, Sasaki S, Ando Y 2011 Phys. Rev. Lett. 106 127004Google Scholar

    [19]

    Sasaki S, Kriener M, Segawa K., Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001Google Scholar

    [20]

    Levy N, Zhang T, Ha J, Sharifi F, Alec Talin A, Kuk Y, Stroscio J A 2013 Phys. Rev. Lett. 110 117001Google Scholar

    [21]

    Liu Z H, Yao X, Shao J F, Zuo M, Po L, Tan S, Zhang C J, Zhang Y H 2015 J. Am. Chem. Soc. 137 10512Google Scholar

    [22]

    Maurya S V K, Neha P, Srivastava P, Patnaik S 2015 Phys. Rev. B 92 020506Google Scholar

    [23]

    Lawson B J, Corbae P, Li G, Yu F, Asaba T, Tinsman C, Qiu Y, Medvedeva J E, Hor Y S, Li L 2016 Phys. Rev. B 94 041114Google Scholar

    [24]

    Smylie M P, Claus H, Welp U, Kwok W K, Qiu Y, Hor Y S, Snezhko A 2016 Phys. Rev. B 94 180510Google Scholar

    [25]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar

    [26]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. U.S.A. 108 24Google Scholar

    [27]

    Zhang C, Sun L, Chen Z, Zhou X, Wu Q, Yi W, Guo J, Dong X, Zhao Z 2011 Phys. Rev. B 83 140504Google Scholar

    [28]

    Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K, Paglione J 2013 Phys. Rev. Lett. 111 087001Google Scholar

    [29]

    Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S, Jin C Q 2013 Sci. Rep. 3 2016Google Scholar

    [30]

    Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [31]

    Xu J P, Liu C H, Wang M X, Ge J F, Liu Z L, Yang X J, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [32]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [33]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [34]

    Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, Lu L 2012 Sci. Rep. 2 339Google Scholar

    [35]

    Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, Yacoby A 2014 Nat. Phys. 10 638Google Scholar

    [36]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [37]

    Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C, Wegscheider W, Kouwenhoven L P 2015 Nat. Nanotechnol. 10 593Google Scholar

    [38]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [39]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [40]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [41]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [42]

    Koma A 1999 J. Cryst. Growth 201 236

    [43]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [44]

    Meerschaut A, Deudon C 2001 Mater. Res. Bull. 36 1721Google Scholar

    [45]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [46]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar

    [47]

    Park K, Heremans J J, Scarola V W, Minic D 2010 Phys. Rev. Lett. 105 186801Google Scholar

    [48]

    Liu Y, Bian G, Miller T, Bissen M, Chiang T C 2012 Phys. Rev. B 85 195442Google Scholar

    [49]

    Black-Schaffer A M, Balatsky A V 2013 Phys. Rev. B 87 220506Google Scholar

    [50]

    Tkachov G 2013 Phys. Rev. B 87 245422Google Scholar

    [51]

    Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W Q, Li Q, Gilbert M J, Chou F C, Samarth N, Hasan M Z 2014 Nat. Phys. 10 943Google Scholar

    [52]

    Hess H F, Robinson R B, Dynes R C, Valles J M, Waszczak J V 1989 Phys. Rev. Lett. 62 214Google Scholar

    [53]

    Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J, Fischer O 2002 Phys. Rev. Lett. 89 187003Google Scholar

    [54]

    Sonier J E, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S R, MacFarlane W A, Miller R I, Wong A, Luke G M, Brill J W 1997 Phys. Rev. Lett. 79 1742Google Scholar

    [55]

    Miller R I, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S, Morris G D, Sonier J E, MacFarlane W A 2000 Phys. Rev. Lett. 85 1540Google Scholar

    [56]

    Chiu C K, Gilbert M J, Hughes T L 2011 Phys. Rev. B 84 144507Google Scholar

    [57]

    Gygi F, Schluter M 1991 Phys. Rev. B 43 7609Google Scholar

    [58]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [59]

    He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar

    [60]

    Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar

    [61]

    Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar

    [62]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [63]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [64]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [65]

    Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar

    [66]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403Google Scholar

    [67]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [68]

    Burnell F J, Shnirman A, Oreg Y 2013 Phys. Rev. B 88 224507Google Scholar

    [69]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [70]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [71]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar

  • [1] 雍康乐, 闫家伟, 唐善发, 张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响.  , 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [2] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响.  , 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [3] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [4] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化.  , 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [5] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究.  , 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [6] 周昱, 周青春, 马晓栋. 幺正极限附近费米气体反常激发模式的涡旋.  , 2013, 62(14): 140301. doi: 10.7498/aps.62.140301
    [7] 马莹, 王苍龙, 王文元, 杨阳, 马云云, 蒙红娟, 段文山. 费米-费米散射长度对费米超流气体在幺正极限区域的隧穿现象影响.  , 2012, 61(18): 180303. doi: 10.7498/aps.61.180303
    [8] 张利伟, 许静平, 赫丽, 乔文涛. 含单负材料三明治结构的电磁隧穿特性.  , 2010, 59(11): 7863-7868. doi: 10.7498/aps.59.7863
    [9] 李高清, 陈海军, 薛具奎. 一维双组分玻色-爱因斯坦凝聚体系的量子隧穿特性.  , 2010, 59(3): 1449-1455. doi: 10.7498/aps.59.1449
    [10] 房永翠, 杨志安. 玻色-爱因斯坦凝聚体系中的混沌隧穿行为.  , 2008, 57(12): 7438-7446. doi: 10.7498/aps.57.7438
    [11] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程.  , 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [12] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿.  , 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [13] 李 倩, 王之国, 刘 甦, 邢钟文, 刘 楣. 钙钛矿结构Pr1-xCaxMnO3薄膜中电脉冲诱导电阻值变化的理论研究.  , 2007, 56(3): 1637-1642. doi: 10.7498/aps.56.1637
    [14] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋.  , 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [15] 胡亚鹏, 张靖仪, 赵 峥. Reissner-Nordstrom黑洞中带电粒子由隧穿导致的Hawking辐射的进一步讨论.  , 2007, 56(2): 683-685. doi: 10.7498/aps.56.683
    [16] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解.  , 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [17] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究.  , 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] 吴卓杰, 朱卡的, 袁晓忠, 郑 杭. 电声子相互作用对量子点分子中单电子隧穿的影响.  , 2005, 54(7): 3346-3350. doi: 10.7498/aps.54.3346
    [19] 韩亦文. 用量子隧穿法研究带质量四极矩静态黑洞的Hawking辐射.  , 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [20] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程.  , 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
计量
  • 文章访问数:  14052
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-12
  • 修回日期:  2018-10-11
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回
Baidu
map