-
Wireless energy transfer has broad prospective applications. Current researches focus on electromagnetic induction and magnetic resonance. The former approach is sensitive to position and the latter has larger size, both of which affect the broad application of wireless energy transfer. Two layers of magnetostrictive effect materials and one layer of piezoelectric effect material are bound by epoxy resin, which generates magnetoelectric laminated composite. It is the first time that the output voltage, current and magnetoelectric factor have been deduced without DC magnetic bias. Three samples are implemented and the wireless energy transfer system based on them is developed. The tests on the samples verify the correctness of the theoretic analysis. Further experiments illustrate that there are double frequency characteristics for the magnetoelectric laminated composites; the resonant frequency is proportional to the reciprocal of the length of the composite; the open circuit voltage of the composite could reach 100 V (rms) under a magnetic field of 20 Oe; the maximum energy transferred is 520 mW, which is the highest record reported up to now, with the energy density 1.21W/cm3 and maximum transfer efficiency 35%; the rotation less than 30° has little effect on the output of the composites. Theoretical analyses and experimental results suggest that the magnetoelectric laminated composite based on Metglas/PFC is a very interesting approach to small volume and small power wireless energy transfer applications.
[1] Dong S X, Li J F, Viehland D 2003 Appl. Phys. Lett. 83 2265
[2] Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[3] Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 60 097506]
[4] Bao B H, Luo Y 2011 Acta Phys. Sin. 60 017508 (in Chinese) [鲍丙豪, 骆英 2011 60 017508]
[5] Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 60 057503]
[6] Stewart W 2007 Science 317 55
[7] Casanova J, Zhen N, Lin J 2009 IEEE Trans. Circ. Syst. 56 830
[8] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83
[9] O'Handley R C, Huang J K, Bono D C, Simom J 2008 IEEE Sens. J 8 57
[10] Li P, Wen Y, Liu P, Li X, Jia C 2010 Sensor Actuat. A-Phys 157 100
[11] Dong S X, Zhai J Y , Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502
[12] Li P, Huang X, Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese) [李平, 黄娴, 文玉梅 2012 61 137504]
[13] Dong S X, Zhai J Y, Li J F, Viehland D 2006 Appl. Phys. Lett. 89 252904
[14] Zhai J, Xing Z, Dong S, Li J, Viehland D 2008 J. Am. Ceram. Soc. 91 351
-
[1] Dong S X, Li J F, Viehland D 2003 Appl. Phys. Lett. 83 2265
[2] Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[3] Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 60 097506]
[4] Bao B H, Luo Y 2011 Acta Phys. Sin. 60 017508 (in Chinese) [鲍丙豪, 骆英 2011 60 017508]
[5] Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 60 057503]
[6] Stewart W 2007 Science 317 55
[7] Casanova J, Zhen N, Lin J 2009 IEEE Trans. Circ. Syst. 56 830
[8] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83
[9] O'Handley R C, Huang J K, Bono D C, Simom J 2008 IEEE Sens. J 8 57
[10] Li P, Wen Y, Liu P, Li X, Jia C 2010 Sensor Actuat. A-Phys 157 100
[11] Dong S X, Zhai J Y , Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502
[12] Li P, Huang X, Wen Y M 2012 Acta Phys. Sin. 61 137504 (in Chinese) [李平, 黄娴, 文玉梅 2012 61 137504]
[13] Dong S X, Zhai J Y, Li J F, Viehland D 2006 Appl. Phys. Lett. 89 252904
[14] Zhai J, Xing Z, Dong S, Li J, Viehland D 2008 J. Am. Ceram. Soc. 91 351
Catalog
Metrics
- Abstract views: 8067
- PDF Downloads: 985
- Cited By: 0