搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高阻抗表面的多频带Salisbury屏设计

党可征 时家明 李志刚 孟祥豪 王启超

引用本文:
Citation:

基于高阻抗表面的多频带Salisbury屏设计

党可征, 时家明, 李志刚, 孟祥豪, 王启超

Design of multiband Salisbury screen based on high impedance surfaces

Dang Ke-Zheng, Shi Jia-Ming, Li Zhi-Gang, Meng Xiang-Hao, Wang Qi-Chao
PDF
导出引用
  • 为进一步提高传统Salisbury屏的吸波性能, 本文提出了利用高阻抗表面在特定频率同相反射的特性, 替代原有结构中的金属平板设计多频带Salisbury屏的方法. 通过分析不同频率电磁波经高阻抗表面反射后空间电磁场的场强分布, 说明可以通过共用Salisbury屏的损耗层, 在高阻抗表面同相反射的特征频率附近引入新的吸收带. 以不同尺寸方形周期结构的单频和双频高阻抗表面为例, 从仿真和实验两个方面验证了多频带Salisbury屏设计的可行性, 且实验和仿真结果十分符合. 结果表明, 多频带Salisbury屏基本保留了原有的吸波性能, 同时又引入了新的吸收峰, 吸收峰的位置和数量与高阻抗表面同相反射的频带位置和数目有关. 与传统的Salisbury屏相比, 在材料增加厚度不足1 mm 的情况下, 多频带Salisbury屏的设计使反射率小于-10 dB的吸波带宽由8.5 GHz增加到10.1 GHz, 且实现了向长波方向的拓展, 最低频率由7.5 GHz拓展到5.98 GHz.
    High impedance surface, due to its unique property of in-phase reflection at some frequency, could be used in designing multiband Salisbury screen by replacing the metallic ground plane in a traditional structure, which is proposed, in this paper, to enhance the microwave absorbing performance of the conventional Salisbury screen. First, electromagnetic wave field intensity of different frequency in space after being reflected by a high impedance surface is analyzed, which implies that new absorption bands can be introduced at about the frequencies of in-phase reflection by sharing Salisbury screen’s resistive sheet, without adding extra lossy materials such as lumped elements or others. Then, by taking a single band high impedance surface at 6.25 GHz and a dual-band high impedance surface at 6.27 and 8.17 GHz, which are both composed of patches array with varying periodic size and a thickness of 0.6 mm, the multiband Salisbury screens can be constructed utilizing a conventional one with an absorbing peak at about 10.5 GHz. The reflectivity of these multiband absorbers are simulated by employing the commercial CST microwave studio and later measured using a reflectivity measurement system comprising two polarized horns and a vector network analyzer. Experimental results agree well with the simulations, and all results verify that the method presented at the beginning is effective. Results also show that new additional absorptions appear at the frequencies where microwaves are nearly reflected in phase from the high impedance surface, with the same number of the in-phase reflection bands. Meanwhile, the original microwave absorbing capability of the traditional Salisbury screen is reserved mostly. Compared to the single band high impedance surface, the dual-band high impedance surface performs better in the design as the absorbing bandwidth is wider and the absorbing frequency is lower. With an additional thickness of the high impedance surface (no more than 1 mm), the total absorption bandwidth of the multiband Salisbury screen with a reflection below -10 dB increases from 8.5 to 10.1 GHz, and the lowest frequency with 10 dB absorption falls from 7.5 to 5.98 GHz. So it could be concluded that the design of multiband Salisbury screen is helpful to widen the absorption, especially towards the lower frequency direction.
    • 基金项目: 国家自然科学基金(批准号:61171170)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61171170).
    [1]

    Sievenpiper D 1999 Ph. D. Dissertation ( UCLA)

    [2]

    Monorchio A, Manara G, Lanuzza L 2002 IEEE Antenn. Wirel. Pr. 01 196

    [3]

    Clavijo S, Díaz R E, McKinzie W E 2003 IEEE T. Antenn. Propag. 51 2678

    [4]

    Kretly L C, Silva A M P A 2003 International Microwave and Optoelectronics Conference Parana, Brazil Sept. 20-23, 2003 p219

    [5]

    Ren L H, Luo J R, Zhang C 2011 Acta Phys. Sin. 60 088401 (in Chinese) [任丽红, 罗积润, 张弛 2011 60 088401]

    [6]

    Tan Y, Yuan N, Yang Y, Fu Y 2011 Electron. Lett. 47 582

    [7]

    Vallecchi A, De Luis J R, Capolino F, De Flaviis F 2012 IEEE T. Antenn. Propag. 60 51

    [8]

    Almutawa A T, Mumcu G 2013 IET Microw. Antenna. P. 07 1137

    [9]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]

    [10]

    Iriarte Galarregui J C, Tellechea Pereda A, Martinez De Falcon J L, Ederra I, Gonzalo R, de Maagt P 2013 IEEE T. Antenn. Propag. 61 6136

    [11]

    Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801

    [12]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903

    [13]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2013 Acta Phys. Sin. 62 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2013 62 134102]

    [14]

    Seman F C, Cahill R, Fusco V F, Goussetis G 2011 IET Microw. Antenna. P. 05 149

    [15]

    Seman F C, Cahill R, Fusco V 2010 Proceedings of the Fourth European Conference on Antennas and Propagation Barcelona, Spain, April 12-16, 2010 p1

    [16]

    Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Techn. Let. 53 712

  • [1]

    Sievenpiper D 1999 Ph. D. Dissertation ( UCLA)

    [2]

    Monorchio A, Manara G, Lanuzza L 2002 IEEE Antenn. Wirel. Pr. 01 196

    [3]

    Clavijo S, Díaz R E, McKinzie W E 2003 IEEE T. Antenn. Propag. 51 2678

    [4]

    Kretly L C, Silva A M P A 2003 International Microwave and Optoelectronics Conference Parana, Brazil Sept. 20-23, 2003 p219

    [5]

    Ren L H, Luo J R, Zhang C 2011 Acta Phys. Sin. 60 088401 (in Chinese) [任丽红, 罗积润, 张弛 2011 60 088401]

    [6]

    Tan Y, Yuan N, Yang Y, Fu Y 2011 Electron. Lett. 47 582

    [7]

    Vallecchi A, De Luis J R, Capolino F, De Flaviis F 2012 IEEE T. Antenn. Propag. 60 51

    [8]

    Almutawa A T, Mumcu G 2013 IET Microw. Antenna. P. 07 1137

    [9]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]

    [10]

    Iriarte Galarregui J C, Tellechea Pereda A, Martinez De Falcon J L, Ederra I, Gonzalo R, de Maagt P 2013 IEEE T. Antenn. Propag. 61 6136

    [11]

    Cheng Y Z, Gong R Z, Nie Y, Wang X 2012 Chin. Phys. B 21 127801

    [12]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M, Chen H Y, Liang D F, Deng L J 2013 J. Appl. Phys. 113 013903

    [13]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2013 Acta Phys. Sin. 62 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2013 62 134102]

    [14]

    Seman F C, Cahill R, Fusco V F, Goussetis G 2011 IET Microw. Antenna. P. 05 149

    [15]

    Seman F C, Cahill R, Fusco V 2010 Proceedings of the Fourth European Conference on Antennas and Propagation Barcelona, Spain, April 12-16, 2010 p1

    [16]

    Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Techn. Let. 53 712

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体.  , 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体.  , 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [3] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控.  , 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [4] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [5] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计.  , 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [6] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [7] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏.  , 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [8] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料.  , 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [9] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体.  , 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [10] 李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅. 高Q值超薄完美吸波体设计方法研究.  , 2013, 62(24): 244101. doi: 10.7498/aps.62.244101
    [11] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体.  , 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [12] 鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐. 宽带雷达散射截面减缩人工磁导体复合结构.  , 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [13] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏.  , 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [14] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计.  , 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [15] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用.  , 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [16] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体.  , 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计.  , 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [18] 伍瑞新, 陈 平. 磁性Salisbury屏的高频响应.  , 2004, 53(9): 2915-2918. doi: 10.7498/aps.53.2915
    [19] 伍瑞新, 王相元, 钱 鉴, 张明雪, 朱航飞, 徐培华. 影响Salisbury屏高频响应的若干因数.  , 2004, 53(3): 745-749. doi: 10.7498/aps.53.745
    [20] 于渌. 铁磁金属的表面阻抗与自旋波共振.  , 1964, 20(7): 607-623. doi: 10.7498/aps.20.607
计量
  • 文章访问数:  7224
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-15
  • 修回日期:  2014-11-24
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map