-
The search for new states that exhibit topological order is currently a very active and exciting area of research. Like a topological insulator, superconducting order can also exhibit topological order, which is different from that of a conventional superconductor. This superconductor is so-called " topological superconductor”, which has a full pairing gap in the bulk and gapless surface state. Majorana Fermions obey non-Abelian fractional statistics, and have been proposed to construct topological qubits, so there is a great prospect of scientific research and application in topological quantum computing. It is very interesting that Majorana Fermions are predicted to exist in topological superconductors. However, natural topological superconductor is very rare. Inspired by the realization of topological insulators, theoretical physicists have proposed that via the fabrication of the s-wave superconductor/topological insulator heterostructure, Majorana Fermions may exist in the superconducting topological insulator induced by proximate effect. Due to various kinds of topological insulators and conventional s-wave superconductors, heterostructures constructed by this method can greatly increase the variety of artificial topological superconductors. In this paper we review the experimental progress in the heterostructure composed of the Bi2Te3-type topological insulator and the conventional s-wave superconductor NbSe2. Using molecular beam epitaxy, atomically flat topological insulator film can be fabricated at the top of superconductor substrate. The spatial distribution of Majorana Fermions on the surface of topological insulator can be directly observed by in situ scanning tunneling microscopy/spectroscopy. In the center of a magnetic vortex, Majorana Fermions will appear as the Majorana zero mode, a zero-energy peak inside the superconducting gap. Although the energy gap between low energy quasiparticle excitation and the Majorana zero mode is very small, the evidences such as zero bias conductance anomaly, Y-shape splitting of zero-bias conductance, spin-selective Andreev reflection are self-consistent and reveal that the Majorana zero mode exists in the center of a magnetic vortex. These experiments have led to a new insight into superconductivity. It may open a door to probing the novel physics of Majorana fermions.
-
Keywords:
- proximity effects /
- superconducting films and low-dimensional structures /
- vortex phases /
- tunneling phenomena
[1] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar
[2] Majorana E 1937 Nuovo Cimento 14 171Google Scholar
[3] Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar
[4] Kitaev A 2003 Ann. Phys. 303 2Google Scholar
[5] Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar
[6] Wilczek F 2009 Nat. Phys. 5 614Google Scholar
[7] Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar
[8] Beenakker C W J 2013 Annu. Rev. Condens. Mattter Phys. 4 113Google Scholar
[9] Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar
[10] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[11] Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar
[12] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar
[13] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar
[14] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar
[15] Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar
[16] Linder J, Tanaka Y, Yokoyama T, Sudbo A, Nagaosa N 2010 Phys. Rev. Lett. 104 067001Google Scholar
[17] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001Google Scholar
[18] Kriener M, Segawa K, Ren Z, Sasaki S, Ando Y 2011 Phys. Rev. Lett. 106 127004Google Scholar
[19] Sasaki S, Kriener M, Segawa K., Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001Google Scholar
[20] Levy N, Zhang T, Ha J, Sharifi F, Alec Talin A, Kuk Y, Stroscio J A 2013 Phys. Rev. Lett. 110 117001Google Scholar
[21] Liu Z H, Yao X, Shao J F, Zuo M, Po L, Tan S, Zhang C J, Zhang Y H 2015 J. Am. Chem. Soc. 137 10512Google Scholar
[22] Maurya S V K, Neha P, Srivastava P, Patnaik S 2015 Phys. Rev. B 92 020506Google Scholar
[23] Lawson B J, Corbae P, Li G, Yu F, Asaba T, Tinsman C, Qiu Y, Medvedeva J E, Hor Y S, Li L 2016 Phys. Rev. B 94 041114Google Scholar
[24] Smylie M P, Claus H, Welp U, Kwok W K, Qiu Y, Hor Y S, Snezhko A 2016 Phys. Rev. B 94 180510Google Scholar
[25] Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar
[26] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. U.S.A. 108 24Google Scholar
[27] Zhang C, Sun L, Chen Z, Zhou X, Wu Q, Yi W, Guo J, Dong X, Zhao Z 2011 Phys. Rev. B 83 140504Google Scholar
[28] Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K, Paglione J 2013 Phys. Rev. Lett. 111 087001Google Scholar
[29] Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S, Jin C Q 2013 Sci. Rep. 3 2016Google Scholar
[30] Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar
[31] Xu J P, Liu C H, Wang M X, Ge J F, Liu Z L, Yang X J, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar
[32] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar
[33] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar
[34] Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, Lu L 2012 Sci. Rep. 2 339Google Scholar
[35] Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, Yacoby A 2014 Nat. Phys. 10 638Google Scholar
[36] Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar
[37] Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C, Wegscheider W, Kouwenhoven L P 2015 Nat. Nanotechnol. 10 593Google Scholar
[38] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar
[39] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar
[40] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar
[41] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar
[42] Koma A 1999 J. Cryst. Growth 201 236
[43] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar
[44] Meerschaut A, Deudon C 2001 Mater. Res. Bull. 36 1721Google Scholar
[45] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar
[46] Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar
[47] Park K, Heremans J J, Scarola V W, Minic D 2010 Phys. Rev. Lett. 105 186801Google Scholar
[48] Liu Y, Bian G, Miller T, Bissen M, Chiang T C 2012 Phys. Rev. B 85 195442Google Scholar
[49] Black-Schaffer A M, Balatsky A V 2013 Phys. Rev. B 87 220506Google Scholar
[50] Tkachov G 2013 Phys. Rev. B 87 245422Google Scholar
[51] Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W Q, Li Q, Gilbert M J, Chou F C, Samarth N, Hasan M Z 2014 Nat. Phys. 10 943Google Scholar
[52] Hess H F, Robinson R B, Dynes R C, Valles J M, Waszczak J V 1989 Phys. Rev. Lett. 62 214Google Scholar
[53] Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J, Fischer O 2002 Phys. Rev. Lett. 89 187003Google Scholar
[54] Sonier J E, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S R, MacFarlane W A, Miller R I, Wong A, Luke G M, Brill J W 1997 Phys. Rev. Lett. 79 1742Google Scholar
[55] Miller R I, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S, Morris G D, Sonier J E, MacFarlane W A 2000 Phys. Rev. Lett. 85 1540Google Scholar
[56] Chiu C K, Gilbert M J, Hughes T L 2011 Phys. Rev. B 84 144507Google Scholar
[57] Gygi F, Schluter M 1991 Phys. Rev. B 43 7609Google Scholar
[58] Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar
[59] He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar
[60] Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar
[61] Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar
[62] Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar
[63] Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar
[64] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar
[65] Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar
[66] Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403Google Scholar
[67] Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar
[68] Burnell F J, Shnirman A, Oreg Y 2013 Phys. Rev. B 88 224507Google Scholar
[69] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar
[70] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar
[71] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar
-
图 1 (a)在NbSe2衬底上生长的Bi2Se3薄膜的形貌; (b)Bi2Se3/NbSe2异质结示意图; (c)NbSe2衬底表面的原子分辨STM图; (d) Bi2Se3薄膜表面的原子分辨STM图[30]
Figure 1. (a) Morphology of Bi2Se3 thin films grown on NbSe2 substrate; (b) schematic diagram of the Bi2Se3/NbSe2 heterostructure; (c) atomically resolved STM image of the NbSe2 substrate; (d) atomically resolved STM image of the Bi2Se3 film[30].
图 2 在Bi2Se3/NbSe2上探测的超导能隙[30] (a) 4.2 K和 (b) 0.4 K温度下3 QL厚的Bi2Se3薄膜的dI/dV谱; (c) 4.2 K和 (d) 0.4 K温度下6 QL厚的Bi2Se3薄膜的dI/dV谱
Figure 2. Superconducting energy gap detected in Bi2Se3 thin films grown on NbSe2 substrate[30]: dI/dV spectra measured on 3 QL Bi2Se3 films at (a) 4.2 K and (b) 0.4 K; dI/dV spectra measured on 6 QL Bi2Se3 films at (c) 4.2 K and (d) 0.4 K.
图 5 在Bi2Te3/NbSe2上探测的超导能隙[31] (a)各种厚度的Bi2Te3薄膜上测得的超导能隙; (b)在NbSe2衬底, 2 QL以及3 QL Bi2Te3/NbSe2上测得的超导能隙; (c)超导能隙随厚度的变化, 插图为3 QL Bi2Se3/NbSe2的超导能隙. 这些dI/dV谱都是在0.4 K温度下测量的
Figure 5. Superconducting energy gap observed on Bi2Te3/NbSe2[31]: (a) A series of dI/dV spectra taken on different thicknesses of Bi2Te3 thin films at 0.4 K; (b) dI/dV spectra taken on pristine NbSe2, 2 QL, and 3 QL Bi2Te3/NbSe2; (c) thickness dependence of the superconducting energy gap; Inset is the dI/dV spectra measured at 0.4 K on 3 QL Bi2Se3/NbSe2.
图 6 (a) 12 K时测得的4 QL Bi2Se3/NbSe2的能带结构, 入射光子能量为18 eV; 4 QL 厚的Bi2Se3/NbSe2在 (b) k1和 (c) k2处的ARPES谱随温度的变化关系; (d) 12 K时测得的7 QL Bi2Se3/NbSe2的能带结构, 入射光子能量为18 eV; 7 QL 厚的Bi2Se3/NbSe2在 (e) k1和(f) k2处的ARPES谱随温度的变化关系[51]
Figure 6. (a) Band structure of a 4 QL Bi2Se3/NbSe2 measured at 12 K using an incident photon energy of 18 eV; Temperature dependence of ARPES spectra at (b) k1 and (c) k2 indicated in Fig. (a); (d) Band structure of a 7 QL Bi2Se3/NbSe2 measured at 12 K using an incident photon energy of 18 eV; Temperature dependence of ARPES spectra at (e) k1 and (f) k2 indicated in Fig. (d)[51].
图 7 在0.4 K和0.75 T下在 (a) NbSe2和 (b) 3 QL Bi2Te3/NbSe2上的零偏压电导的映射图; 在 (c) NbSe2和 (d) 5 QL Bi2Te3/NbSe2上单个涡旋的零偏压电导的映射图[31]
Figure 7. Large-scale zero-bias dI/dV maps measured at 0.4 K and 0.75 T on (a) NbSe2 and (b) 3 QL Bi2Te3/NbSe2; Zero-bias dI/dV maps for a single vortex measured at 0.4 K and 0.1 T on (c) NbSe2 and (d) 5 QL Bi2Te3/NbSe2[31].
图 8 (a)在0.4 K和0.1 T下在NbSe2和3 QL Bi2Te3/NbSe2上得到的穿过涡旋中心的零偏压电导轮廓图; (b) Bi2Te3/NbSe2的超导相干长度与薄膜厚度的依赖关系; (c) 5 QL Bi2Te3/NbSe2的超导相干长度与磁场强度的依赖关系[31]
Figure 8. (a) Normalized ZBC profiles crossing through the centers of vortices at 0.4 K and 0.1 T on NbSe2 and 3 QL Bi2Te3/NbSe2; (b) thickness dependence of the coherence length; (c) the coherence length as a function of the magnetic field measured on 5 QL Bi2Te3/NbSe2[31].
图 12 (a)在0.10 T外加磁场下5 QL Bi2Te3/NbSe2的单个涡旋中心处束缚态随空间演化的dI/dV谱强度图; (b)在0.18 T外加磁场下5 QL Bi2Te3/NbSe2的单个涡旋中心处束缚态随空间演化的dI/dV谱强度图, 束缚态从一开始就发生劈裂, 这与图(a)形成鲜明的对比[32]
Figure 12. (a) Spatially resolved bound states within a vortex at 0.10 T in the 5 QL Bi2Te3/NbSe2 heterostructures; (b) spatially resolved bound states within a vortex at 0.18 T in the 5 QL Bi2Te3/NbSe2 heterostructures. The peak-splitting start point is zero, in sharp contrast to that in Fig. (a)[32].
图 13 (a)拓扑超导体5 QL Bi2Te3/NbSe2在0.1 T外加磁场下磁通涡旋的零偏压dI/dV映射图; (b)在磁通涡旋中心用自旋极化的针尖测得的dI/dV谱; (c)在离磁通涡旋中心10 nm远的地方用自旋极化的针尖测得的dI/dV谱[33]
Figure 13. (a) Zero bias dI/dV mapping of a vortex at 0.1 T on the topological superconductor 5 QL Bi2Te3/NbSe2. (b) dI/dV at the vortex center measured with a fully spin polarized tip. (c) dI/dV at 10 nm away from the center measured with a fully spin polarized tip[33].
图 14 用自旋极化的针尖在磁通涡旋中心测得的dI/dV谱[33] (a) 3 QL Bi2Te3/NbSe2, B = 0.1 T; (b) NbSe2, B = 0.1 T; (c) 5 QL Bi2Te3/NbSe2, B = 0.22 T
Figure 14. dI/dV curves at the center of a vortex core measured with a fully spin polarized tip[33]: (a) 3 QL Bi2Te3/NbSe2, B = 0.1 T; (b) Bare NbSe2, B = 0.1 T; (c) 5 QL Bi2Te3/NbSe2, B = 0.22 T.
-
[1] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar
[2] Majorana E 1937 Nuovo Cimento 14 171Google Scholar
[3] Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar
[4] Kitaev A 2003 Ann. Phys. 303 2Google Scholar
[5] Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar
[6] Wilczek F 2009 Nat. Phys. 5 614Google Scholar
[7] Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar
[8] Beenakker C W J 2013 Annu. Rev. Condens. Mattter Phys. 4 113Google Scholar
[9] Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar
[10] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[11] Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar
[12] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar
[13] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar
[14] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar
[15] Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar
[16] Linder J, Tanaka Y, Yokoyama T, Sudbo A, Nagaosa N 2010 Phys. Rev. Lett. 104 067001Google Scholar
[17] Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001Google Scholar
[18] Kriener M, Segawa K, Ren Z, Sasaki S, Ando Y 2011 Phys. Rev. Lett. 106 127004Google Scholar
[19] Sasaki S, Kriener M, Segawa K., Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001Google Scholar
[20] Levy N, Zhang T, Ha J, Sharifi F, Alec Talin A, Kuk Y, Stroscio J A 2013 Phys. Rev. Lett. 110 117001Google Scholar
[21] Liu Z H, Yao X, Shao J F, Zuo M, Po L, Tan S, Zhang C J, Zhang Y H 2015 J. Am. Chem. Soc. 137 10512Google Scholar
[22] Maurya S V K, Neha P, Srivastava P, Patnaik S 2015 Phys. Rev. B 92 020506Google Scholar
[23] Lawson B J, Corbae P, Li G, Yu F, Asaba T, Tinsman C, Qiu Y, Medvedeva J E, Hor Y S, Li L 2016 Phys. Rev. B 94 041114Google Scholar
[24] Smylie M P, Claus H, Welp U, Kwok W K, Qiu Y, Hor Y S, Snezhko A 2016 Phys. Rev. B 94 180510Google Scholar
[25] Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar
[26] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. U.S.A. 108 24Google Scholar
[27] Zhang C, Sun L, Chen Z, Zhou X, Wu Q, Yi W, Guo J, Dong X, Zhao Z 2011 Phys. Rev. B 83 140504Google Scholar
[28] Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K, Paglione J 2013 Phys. Rev. Lett. 111 087001Google Scholar
[29] Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S, Jin C Q 2013 Sci. Rep. 3 2016Google Scholar
[30] Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar
[31] Xu J P, Liu C H, Wang M X, Ge J F, Liu Z L, Yang X J, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar
[32] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar
[33] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar
[34] Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, Lu L 2012 Sci. Rep. 2 339Google Scholar
[35] Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, Yacoby A 2014 Nat. Phys. 10 638Google Scholar
[36] Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar
[37] Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C, Wegscheider W, Kouwenhoven L P 2015 Nat. Nanotechnol. 10 593Google Scholar
[38] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar
[39] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar
[40] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar
[41] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar
[42] Koma A 1999 J. Cryst. Growth 201 236
[43] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar
[44] Meerschaut A, Deudon C 2001 Mater. Res. Bull. 36 1721Google Scholar
[45] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar
[46] Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar
[47] Park K, Heremans J J, Scarola V W, Minic D 2010 Phys. Rev. Lett. 105 186801Google Scholar
[48] Liu Y, Bian G, Miller T, Bissen M, Chiang T C 2012 Phys. Rev. B 85 195442Google Scholar
[49] Black-Schaffer A M, Balatsky A V 2013 Phys. Rev. B 87 220506Google Scholar
[50] Tkachov G 2013 Phys. Rev. B 87 245422Google Scholar
[51] Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W Q, Li Q, Gilbert M J, Chou F C, Samarth N, Hasan M Z 2014 Nat. Phys. 10 943Google Scholar
[52] Hess H F, Robinson R B, Dynes R C, Valles J M, Waszczak J V 1989 Phys. Rev. Lett. 62 214Google Scholar
[53] Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J, Fischer O 2002 Phys. Rev. Lett. 89 187003Google Scholar
[54] Sonier J E, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S R, MacFarlane W A, Miller R I, Wong A, Luke G M, Brill J W 1997 Phys. Rev. Lett. 79 1742Google Scholar
[55] Miller R I, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S, Morris G D, Sonier J E, MacFarlane W A 2000 Phys. Rev. Lett. 85 1540Google Scholar
[56] Chiu C K, Gilbert M J, Hughes T L 2011 Phys. Rev. B 84 144507Google Scholar
[57] Gygi F, Schluter M 1991 Phys. Rev. B 43 7609Google Scholar
[58] Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar
[59] He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar
[60] Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar
[61] Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar
[62] Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar
[63] Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar
[64] Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar
[65] Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar
[66] Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403Google Scholar
[67] Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar
[68] Burnell F J, Shnirman A, Oreg Y 2013 Phys. Rev. B 88 224507Google Scholar
[69] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar
[70] Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar
[71] Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar
Catalog
Metrics
- Abstract views: 14053
- PDF Downloads: 728
- Cited By: 0