Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor

Li Yao-Yi Jia Jin-Feng

Citation:

Search for Majorana zero mode in the magnetic vortex of artificial topological superconductor

Li Yao-Yi, Jia Jin-Feng
PDF
HTML
Get Citation
  • The search for new states that exhibit topological order is currently a very active and exciting area of research. Like a topological insulator, superconducting order can also exhibit topological order, which is different from that of a conventional superconductor. This superconductor is so-called " topological superconductor”, which has a full pairing gap in the bulk and gapless surface state. Majorana Fermions obey non-Abelian fractional statistics, and have been proposed to construct topological qubits, so there is a great prospect of scientific research and application in topological quantum computing. It is very interesting that Majorana Fermions are predicted to exist in topological superconductors. However, natural topological superconductor is very rare. Inspired by the realization of topological insulators, theoretical physicists have proposed that via the fabrication of the s-wave superconductor/topological insulator heterostructure, Majorana Fermions may exist in the superconducting topological insulator induced by proximate effect. Due to various kinds of topological insulators and conventional s-wave superconductors, heterostructures constructed by this method can greatly increase the variety of artificial topological superconductors. In this paper we review the experimental progress in the heterostructure composed of the Bi2Te3-type topological insulator and the conventional s-wave superconductor NbSe2. Using molecular beam epitaxy, atomically flat topological insulator film can be fabricated at the top of superconductor substrate. The spatial distribution of Majorana Fermions on the surface of topological insulator can be directly observed by in situ scanning tunneling microscopy/spectroscopy. In the center of a magnetic vortex, Majorana Fermions will appear as the Majorana zero mode, a zero-energy peak inside the superconducting gap. Although the energy gap between low energy quasiparticle excitation and the Majorana zero mode is very small, the evidences such as zero bias conductance anomaly, Y-shape splitting of zero-bias conductance, spin-selective Andreev reflection are self-consistent and reveal that the Majorana zero mode exists in the center of a magnetic vortex. These experiments have led to a new insight into superconductivity. It may open a door to probing the novel physics of Majorana fermions.
      Corresponding author: Li Yao-Yi, yaoyili@sjtu.edu.cn ; Jia Jin-Feng, jfjia@sjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0301003, 2016YFA0300403), the National Natural Science Foundation of China (Grant Nos. 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201, U1632272, 11655002), and the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB28000000).
    [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [4]

    Kitaev A 2003 Ann. Phys. 303 2Google Scholar

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [6]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [7]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [8]

    Beenakker C W J 2013 Annu. Rev. Condens. Mattter Phys. 4 113Google Scholar

    [9]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [11]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [12]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [13]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [14]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [15]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [16]

    Linder J, Tanaka Y, Yokoyama T, Sudbo A, Nagaosa N 2010 Phys. Rev. Lett. 104 067001Google Scholar

    [17]

    Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001Google Scholar

    [18]

    Kriener M, Segawa K, Ren Z, Sasaki S, Ando Y 2011 Phys. Rev. Lett. 106 127004Google Scholar

    [19]

    Sasaki S, Kriener M, Segawa K., Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001Google Scholar

    [20]

    Levy N, Zhang T, Ha J, Sharifi F, Alec Talin A, Kuk Y, Stroscio J A 2013 Phys. Rev. Lett. 110 117001Google Scholar

    [21]

    Liu Z H, Yao X, Shao J F, Zuo M, Po L, Tan S, Zhang C J, Zhang Y H 2015 J. Am. Chem. Soc. 137 10512Google Scholar

    [22]

    Maurya S V K, Neha P, Srivastava P, Patnaik S 2015 Phys. Rev. B 92 020506Google Scholar

    [23]

    Lawson B J, Corbae P, Li G, Yu F, Asaba T, Tinsman C, Qiu Y, Medvedeva J E, Hor Y S, Li L 2016 Phys. Rev. B 94 041114Google Scholar

    [24]

    Smylie M P, Claus H, Welp U, Kwok W K, Qiu Y, Hor Y S, Snezhko A 2016 Phys. Rev. B 94 180510Google Scholar

    [25]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar

    [26]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. U.S.A. 108 24Google Scholar

    [27]

    Zhang C, Sun L, Chen Z, Zhou X, Wu Q, Yi W, Guo J, Dong X, Zhao Z 2011 Phys. Rev. B 83 140504Google Scholar

    [28]

    Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K, Paglione J 2013 Phys. Rev. Lett. 111 087001Google Scholar

    [29]

    Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S, Jin C Q 2013 Sci. Rep. 3 2016Google Scholar

    [30]

    Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [31]

    Xu J P, Liu C H, Wang M X, Ge J F, Liu Z L, Yang X J, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [32]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [33]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [34]

    Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, Lu L 2012 Sci. Rep. 2 339Google Scholar

    [35]

    Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, Yacoby A 2014 Nat. Phys. 10 638Google Scholar

    [36]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [37]

    Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C, Wegscheider W, Kouwenhoven L P 2015 Nat. Nanotechnol. 10 593Google Scholar

    [38]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [39]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [40]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [41]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [42]

    Koma A 1999 J. Cryst. Growth 201 236

    [43]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [44]

    Meerschaut A, Deudon C 2001 Mater. Res. Bull. 36 1721Google Scholar

    [45]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [46]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar

    [47]

    Park K, Heremans J J, Scarola V W, Minic D 2010 Phys. Rev. Lett. 105 186801Google Scholar

    [48]

    Liu Y, Bian G, Miller T, Bissen M, Chiang T C 2012 Phys. Rev. B 85 195442Google Scholar

    [49]

    Black-Schaffer A M, Balatsky A V 2013 Phys. Rev. B 87 220506Google Scholar

    [50]

    Tkachov G 2013 Phys. Rev. B 87 245422Google Scholar

    [51]

    Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W Q, Li Q, Gilbert M J, Chou F C, Samarth N, Hasan M Z 2014 Nat. Phys. 10 943Google Scholar

    [52]

    Hess H F, Robinson R B, Dynes R C, Valles J M, Waszczak J V 1989 Phys. Rev. Lett. 62 214Google Scholar

    [53]

    Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J, Fischer O 2002 Phys. Rev. Lett. 89 187003Google Scholar

    [54]

    Sonier J E, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S R, MacFarlane W A, Miller R I, Wong A, Luke G M, Brill J W 1997 Phys. Rev. Lett. 79 1742Google Scholar

    [55]

    Miller R I, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S, Morris G D, Sonier J E, MacFarlane W A 2000 Phys. Rev. Lett. 85 1540Google Scholar

    [56]

    Chiu C K, Gilbert M J, Hughes T L 2011 Phys. Rev. B 84 144507Google Scholar

    [57]

    Gygi F, Schluter M 1991 Phys. Rev. B 43 7609Google Scholar

    [58]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [59]

    He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar

    [60]

    Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar

    [61]

    Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar

    [62]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [63]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [64]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [65]

    Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar

    [66]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403Google Scholar

    [67]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [68]

    Burnell F J, Shnirman A, Oreg Y 2013 Phys. Rev. B 88 224507Google Scholar

    [69]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [70]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [71]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar

  • 图 1  (a)在NbSe2衬底上生长的Bi2Se3薄膜的形貌; (b)Bi2Se3/NbSe2异质结示意图; (c)NbSe2衬底表面的原子分辨STM图; (d) Bi2Se3薄膜表面的原子分辨STM图[30]

    Figure 1.  (a) Morphology of Bi2Se3 thin films grown on NbSe2 substrate; (b) schematic diagram of the Bi2Se3/NbSe2 heterostructure; (c) atomically resolved STM image of the NbSe2 substrate; (d) atomically resolved STM image of the Bi2Se3 film[30].

    图 2  在Bi2Se3/NbSe2上探测的超导能隙[30] (a) 4.2 K和 (b) 0.4 K温度下3 QL厚的Bi2Se3薄膜的dI/dV谱; (c) 4.2 K和 (d) 0.4 K温度下6 QL厚的Bi2Se3薄膜的dI/dV

    Figure 2.  Superconducting energy gap detected in Bi2Se3 thin films grown on NbSe2 substrate[30]: dI/dV spectra measured on 3 QL Bi2Se3 films at (a) 4.2 K and (b) 0.4 K; dI/dV spectra measured on 6 QL Bi2Se3 films at (c) 4.2 K and (d) 0.4 K.

    图 3  厚度为 (a) 3 QL, (b) 6 QL, (c) 9 QL, (d) 12 QL 的Bi2Se3/NbSe2的能带结构[30]

    Figure 3.  Band structure of (a) 3 QL, (b) 6 QL, (c) 9 QL, (d) 12 QL Bi2Se3 thin films grown on NbSe2 substrate[30].

    图 4  (a)在NbSe2衬底上生长的Bi2Te3薄膜的形貌; (b) 2 QL, (c) 3 QL, (d) 5 QL Bi2Te3/NbSe2在4.2 K温度下测得的dI/dV[31]

    Figure 4.  (a) Morphology of Bi2Te3 thin films grown on NbSe2 substrate; dI/dV spectra measured at 4.2 K on (b) 2 QL, (c) 3 QL, (d) 5 QL Bi2Te3/NbSe2[31].

    图 5  在Bi2Te3/NbSe2上探测的超导能隙[31] (a)各种厚度的Bi2Te3薄膜上测得的超导能隙; (b)在NbSe2衬底, 2 QL以及3 QL Bi2Te3/NbSe2上测得的超导能隙; (c)超导能隙随厚度的变化, 插图为3 QL Bi2Se3/NbSe2的超导能隙. 这些dI/dV谱都是在0.4 K温度下测量的

    Figure 5.  Superconducting energy gap observed on Bi2Te3/NbSe2[31]: (a) A series of dI/dV spectra taken on different thicknesses of Bi2Te3 thin films at 0.4 K; (b) dI/dV spectra taken on pristine NbSe2, 2 QL, and 3 QL Bi2Te3/NbSe2; (c) thickness dependence of the superconducting energy gap; Inset is the dI/dV spectra measured at 0.4 K on 3 QL Bi2Se3/NbSe2.

    图 6  (a) 12 K时测得的4 QL Bi2Se3/NbSe2的能带结构, 入射光子能量为18 eV; 4 QL 厚的Bi2Se3/NbSe2在 (b) k1和 (c) k2处的ARPES谱随温度的变化关系; (d) 12 K时测得的7 QL Bi2Se3/NbSe2的能带结构, 入射光子能量为18 eV; 7 QL 厚的Bi2Se3/NbSe2在 (e) k1和(f) k2处的ARPES谱随温度的变化关系[51]

    Figure 6.  (a) Band structure of a 4 QL Bi2Se3/NbSe2 measured at 12 K using an incident photon energy of 18 eV; Temperature dependence of ARPES spectra at (b) k1 and (c) k2 indicated in Fig. (a); (d) Band structure of a 7 QL Bi2Se3/NbSe2 measured at 12 K using an incident photon energy of 18 eV; Temperature dependence of ARPES spectra at (e) k1 and (f) k2 indicated in Fig. (d)[51].

    图 7  在0.4 K和0.75 T下在 (a) NbSe2和 (b) 3 QL Bi2Te3/NbSe2上的零偏压电导的映射图; 在 (c) NbSe2和 (d) 5 QL Bi2Te3/NbSe2上单个涡旋的零偏压电导的映射图[31]

    Figure 7.  Large-scale zero-bias dI/dV maps measured at 0.4 K and 0.75 T on (a) NbSe2 and (b) 3 QL Bi2Te3/NbSe2; Zero-bias dI/dV maps for a single vortex measured at 0.4 K and 0.1 T on (c) NbSe2 and (d) 5 QL Bi2Te3/NbSe2[31].

    图 8  (a)在0.4 K和0.1 T下在NbSe2和3 QL Bi2Te3/NbSe2上得到的穿过涡旋中心的零偏压电导轮廓图; (b) Bi2Te3/NbSe2的超导相干长度与薄膜厚度的依赖关系; (c) 5 QL Bi2Te3/NbSe2的超导相干长度与磁场强度的依赖关系[31]

    Figure 8.  (a) Normalized ZBC profiles crossing through the centers of vortices at 0.4 K and 0.1 T on NbSe2 and 3 QL Bi2Te3/NbSe2; (b) thickness dependence of the coherence length; (c) the coherence length as a function of the magnetic field measured on 5 QL Bi2Te3/NbSe2[31].

    图 9  (a) 5 QL Bi2Te3/NbSe2, (b) NbSe2, (c) 2 QL Bi2Te3/NbSe2单个涡旋中心处的dI/dV谱随磁场强度的变化关系[32]

    Figure 9.  Magnetic field-dependent dI/dV spectra taken at a vortex center of (a) 5 QL Bi2Te3/NbSe2, (b) pristine NbSe2, and (c) 2 QL Bi2Te3/NbSe2[32].

    图 10  (a)在0.4 K和0.1 T下在5 QL Bi2Te3/NbSe2上单个涡旋的零偏压电导映射图; (b)沿着图(a)中虚线方向做的一系列随空间演化的dI/dV[32]

    Figure 10.  (a) A vortex mapped by zero bias dI/dV on 5 QL Bi2Te3/NbSe2 at 0.1 T and 0.4 K; (b) spatially resolved dI/dV spectra taken along the dashed line in Fig. (a)[32].

    图 11  (a) 1 QL, (b) 2 QL, (c) 3 QL, (d) 4 QL, (e) 5 QL, (f) 6 QL Bi2Te3/NbSe2在0.10 T外加磁场下测得的涡旋中束缚态随空间演化的dI/dV谱强度图[32]

    Figure 11.  Spatially resolved bound states within a vortex at 0.10 T in (a) 1 QL, (b) 2 QL, (c) 3 QL, (d) 4 QL, (e) 5 QL, (f) 6 QL Bi2Te3/NbSe2 heterostructures[32].

    图 12  (a)在0.10 T外加磁场下5 QL Bi2Te3/NbSe2的单个涡旋中心处束缚态随空间演化的dI/dV谱强度图; (b)在0.18 T外加磁场下5 QL Bi2Te3/NbSe2的单个涡旋中心处束缚态随空间演化的dI/dV谱强度图, 束缚态从一开始就发生劈裂, 这与图(a)形成鲜明的对比[32]

    Figure 12.  (a) Spatially resolved bound states within a vortex at 0.10 T in the 5 QL Bi2Te3/NbSe2 heterostructures; (b) spatially resolved bound states within a vortex at 0.18 T in the 5 QL Bi2Te3/NbSe2 heterostructures. The peak-splitting start point is zero, in sharp contrast to that in Fig. (a)[32].

    图 13  (a)拓扑超导体5 QL Bi2Te3/NbSe2在0.1 T外加磁场下磁通涡旋的零偏压dI/dV映射图; (b)在磁通涡旋中心用自旋极化的针尖测得的dI/dV谱; (c)在离磁通涡旋中心10 nm远的地方用自旋极化的针尖测得的dI/dV[33]

    Figure 13.  (a) Zero bias dI/dV mapping of a vortex at 0.1 T on the topological superconductor 5 QL Bi2Te3/NbSe2. (b) dI/dV at the vortex center measured with a fully spin polarized tip. (c) dI/dV at 10 nm away from the center measured with a fully spin polarized tip[33].

    图 14  用自旋极化的针尖在磁通涡旋中心测得的dI/dV[33] (a) 3 QL Bi2Te3/NbSe2, B = 0.1 T; (b) NbSe2, B = 0.1 T; (c) 5 QL Bi2Te3/NbSe2, B = 0.22 T

    Figure 14.  dI/dV curves at the center of a vortex core measured with a fully spin polarized tip[33]: (a) 3 QL Bi2Te3/NbSe2, B = 0.1 T; (b) Bare NbSe2, B = 0.1 T; (c) 5 QL Bi2Te3/NbSe2, B = 0.22 T.

    Baidu
  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Majorana E 1937 Nuovo Cimento 14 171Google Scholar

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [4]

    Kitaev A 2003 Ann. Phys. 303 2Google Scholar

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [6]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [7]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [8]

    Beenakker C W J 2013 Annu. Rev. Condens. Mattter Phys. 4 113Google Scholar

    [9]

    Leijnse M, Flensberg K 2012 Semicond. Sci. Technol. 27 124003Google Scholar

    [10]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [11]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [12]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001Google Scholar

    [13]

    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar

    [14]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [15]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [16]

    Linder J, Tanaka Y, Yokoyama T, Sudbo A, Nagaosa N 2010 Phys. Rev. Lett. 104 067001Google Scholar

    [17]

    Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P, Cava R J 2010 Phys. Rev. Lett. 104 057001Google Scholar

    [18]

    Kriener M, Segawa K, Ren Z, Sasaki S, Ando Y 2011 Phys. Rev. Lett. 106 127004Google Scholar

    [19]

    Sasaki S, Kriener M, Segawa K., Yada K, Tanaka Y, Sato M, Ando Y 2011 Phys. Rev. Lett. 107 217001Google Scholar

    [20]

    Levy N, Zhang T, Ha J, Sharifi F, Alec Talin A, Kuk Y, Stroscio J A 2013 Phys. Rev. Lett. 110 117001Google Scholar

    [21]

    Liu Z H, Yao X, Shao J F, Zuo M, Po L, Tan S, Zhang C J, Zhang Y H 2015 J. Am. Chem. Soc. 137 10512Google Scholar

    [22]

    Maurya S V K, Neha P, Srivastava P, Patnaik S 2015 Phys. Rev. B 92 020506Google Scholar

    [23]

    Lawson B J, Corbae P, Li G, Yu F, Asaba T, Tinsman C, Qiu Y, Medvedeva J E, Hor Y S, Li L 2016 Phys. Rev. B 94 041114Google Scholar

    [24]

    Smylie M P, Claus H, Welp U, Kwok W K, Qiu Y, Hor Y S, Snezhko A 2016 Phys. Rev. B 94 180510Google Scholar

    [25]

    Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z, Segawa K, Ando Y, Maeno Y 2017 Nat. Phys. 13 123Google Scholar

    [26]

    Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z, Jin C Q 2011 Proc. Natl. Acad. Sci. U.S.A. 108 24Google Scholar

    [27]

    Zhang C, Sun L, Chen Z, Zhou X, Wu Q, Yi W, Guo J, Dong X, Zhao Z 2011 Phys. Rev. B 83 140504Google Scholar

    [28]

    Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K, Paglione J 2013 Phys. Rev. Lett. 111 087001Google Scholar

    [29]

    Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S, Jin C Q 2013 Sci. Rep. 3 2016Google Scholar

    [30]

    Wang M X, Liu C H, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X C, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [31]

    Xu J P, Liu C H, Wang M X, Ge J F, Liu Z L, Yang X J, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [32]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [33]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [34]

    Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, Lu L 2012 Sci. Rep. 2 339Google Scholar

    [35]

    Hart S, Ren H, Wagner T, Leubner P, Mühlbauer M, Brüne C, Buhmann H, Molenkamp L W, Yacoby A 2014 Nat. Phys. 10 638Google Scholar

    [36]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [37]

    Pribiag V S, Beukman A J A, Qu F, Cassidy M C, Charpentier C, Wegscheider W, Kouwenhoven L P 2015 Nat. Nanotechnol. 10 593Google Scholar

    [38]

    He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 Science 357 294Google Scholar

    [39]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [40]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [41]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [42]

    Koma A 1999 J. Cryst. Growth 201 236

    [43]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [44]

    Meerschaut A, Deudon C 2001 Mater. Res. Bull. 36 1721Google Scholar

    [45]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [46]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar

    [47]

    Park K, Heremans J J, Scarola V W, Minic D 2010 Phys. Rev. Lett. 105 186801Google Scholar

    [48]

    Liu Y, Bian G, Miller T, Bissen M, Chiang T C 2012 Phys. Rev. B 85 195442Google Scholar

    [49]

    Black-Schaffer A M, Balatsky A V 2013 Phys. Rev. B 87 220506Google Scholar

    [50]

    Tkachov G 2013 Phys. Rev. B 87 245422Google Scholar

    [51]

    Xu S Y, Alidoust N, Belopolski I, Richardella A, Liu C, Neupane M, Bian G, Huang S H, Sankar R, Fang C, Dellabetta B, Dai W Q, Li Q, Gilbert M J, Chou F C, Samarth N, Hasan M Z 2014 Nat. Phys. 10 943Google Scholar

    [52]

    Hess H F, Robinson R B, Dynes R C, Valles J M, Waszczak J V 1989 Phys. Rev. Lett. 62 214Google Scholar

    [53]

    Eskildsen M R, Kugler M, Tanaka S, Jun J, Kazakov S M, Karpinski J, Fischer O 2002 Phys. Rev. Lett. 89 187003Google Scholar

    [54]

    Sonier J E, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S R, MacFarlane W A, Miller R I, Wong A, Luke G M, Brill J W 1997 Phys. Rev. Lett. 79 1742Google Scholar

    [55]

    Miller R I, Kiefl R F, Brewer J H, Chakhalian J, Dunsiger S, Morris G D, Sonier J E, MacFarlane W A 2000 Phys. Rev. Lett. 85 1540Google Scholar

    [56]

    Chiu C K, Gilbert M J, Hughes T L 2011 Phys. Rev. B 84 144507Google Scholar

    [57]

    Gygi F, Schluter M 1991 Phys. Rev. B 43 7609Google Scholar

    [58]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [59]

    He J J, Ng T K, Lee P A, Law K T 2014 Phys. Rev. Lett. 112 037001Google Scholar

    [60]

    Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar

    [61]

    Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar

    [62]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137Google Scholar

    [63]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [64]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [65]

    Wimmer M, Akhmerov A R, Dahlhaus J P, Beenakker C W J 2011 New J. Phys. 13 053016Google Scholar

    [66]

    Nilsson J, Akhmerov A R, Beenakker C W J 2008 Phys. Rev. Lett. 101 120403Google Scholar

    [67]

    Fu L 2010 Phys. Rev. Lett. 104 056402Google Scholar

    [68]

    Burnell F J, Shnirman A, Oreg Y 2013 Phys. Rev. B 88 224507Google Scholar

    [69]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [70]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [71]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar

  • [1] Yong Kang-Le, Yan Jia-Wei, Tang Shan-Fa, Zhang Rong-Zhu. Influence of coma and spherical aberration on transmission characteristics of vortex beams in slant atmospheric turbulence. Acta Physica Sinica, 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [2] Jiang Guang-Yu, Sun Chao, Li Qin-Ran. Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [3] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [4] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [5] Liu Chao-Fei, Wan Wen-Juan, Zhang Gan-Yuan. Vortex pattern in spin-orbit coupled spin-1 Bose-Einstein condensate of 23Na. Acta Physica Sinica, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [6] Zhou Yu, Zhou Qing-Chun, Ma Xiao-Dong. Vortex of an anomalous mode in Fermi gas near unitarity limit. Acta Physica Sinica, 2013, 62(14): 140301. doi: 10.7498/aps.62.140301
    [7] Ma Ying, Wang Cang-Long, Wang Wen-Yuan, Yang Yang, Ma Yun-Yun, Meng Hong-Juan, Duan Wen-Shan. The tunneling phenomena of the Fermi superfluid gases in unitarity by manipulating the Fermi-Fermi scattering length. Acta Physica Sinica, 2012, 61(18): 180303. doi: 10.7498/aps.61.180303
    [8] He Li, Qiao Wen-Tao, Zhang Li-Wei, Xu Jing-Ping. Electromagnetic tunneling properties of sandwich structure containing single negative material. Acta Physica Sinica, 2010, 59(11): 7863-7868. doi: 10.7498/aps.59.7863
    [9] Li Gao-Qing, Chen Hai-Jun, Xue Ju-Kui. One-dimensional tunneling dynamics between two-component Bose-Einstein condensates. Acta Physica Sinica, 2010, 59(3): 1449-1455. doi: 10.7498/aps.59.1449
    [10] Fang Yong-Cui, Yang Zhi-An. Chaos tunneling of Bose-Einstein condensates. Acta Physica Sinica, 2008, 57(12): 7438-7446. doi: 10.7498/aps.57.7438
    [11] Jin Hua, Liu Shu, Zhang Zhen-Zhong, Zhang Li-Gong, Zheng Zhu-Hong, Shen De-Zhen. Exciton tunnelling in (CdZnTe,ZnSeTe)/ZnTe complex quantum wells. Acta Physica Sinica, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [12] Wang Guan-Fang, Liu Hong. Irregular spin tunneling for Bose-Einstein condensates in a sweeping magnetic field. Acta Physica Sinica, 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [13] Li Qian, Wang Zhi-Guo, Liu Su, Xing Zhong-Wen, Liu Mei. Theoretical study on electric-pulse-induced resistance change in perovskite Pr1-xCaxMnO3 films. Acta Physica Sinica, 2007, 56(3): 1637-1642. doi: 10.7498/aps.56.1637
    [14] Wang Li, Wang Qing-Feng, Wang Xi-Qing, Lü Bai-Da. Transversal optical vortex in the interference field of two off-axis Gaussian beams. Acta Physica Sinica, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [15] Hu Ya-Peng, Zhang Jing-Yi, Zhao Zheng. Further discussions on the Hawking radiation of charged particles via tunneling from the Reissner-Norstrom black hole. Acta Physica Sinica, 2007, 56(2): 683-685. doi: 10.7498/aps.56.683
    [16] Li Yong-Qing, Li Xi-Guo, Liu Zi-Yu, Luo Pei-Yan, Zhang Peng-Ming. New vortex solutions of Jackiw-Pi model. Acta Physica Sinica, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [17] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] Wu Zhuo-Jie, Zhu Ka-Di, Yuan Xiao-Zhong, Zheng Hang. Influence of electron-phonon interaction on single electron tunneling in a quantum dot molecule. Acta Physica Sinica, 2005, 54(7): 3346-3350. doi: 10.7498/aps.54.3346
    [19] Han Yi-Wen. Using quantum tunneling method Hawking radiation of a static black hole horizon with a mass-quadrupole moment is studied. Acta Physica Sinica, 2005, 54(11): 5018-5021. doi: 10.7498/aps.54.5018
    [20] Jin Hua, Zhang Li-Gong, Zheng Zhu-Hong, Kong Xiang-Gui, An Li-Nan, Shen De-Zhen. Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots. Acta Physica Sinica, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
Metrics
  • Abstract views:  14053
  • PDF Downloads:  728
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2018
  • Accepted Date:  11 October 2018
  • Available Online:  01 July 2019
  • Published Online:  05 July 2019

/

返回文章
返回
Baidu
map