搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于亚波长人工微结构的电磁波减反增透研究进展

姚尧 沈悦 郝加明 戴宁

引用本文:
Citation:

基于亚波长人工微结构的电磁波减反增透研究进展

姚尧, 沈悦, 郝加明, 戴宁

Antireflection coatings based on subwavelength artificial engineering microstructures

Yao Yao, Shen Yue, Hao Jia-Ming, Dai Ning
PDF
HTML
导出引用
  • 电磁波抗反射技术在太阳能电池、光学透镜、红外传感、探测器等众多应用场景中至关重要, 长久以来一直是先进光学系统、光电器件研究领域热点方向之一. 本文简略回顾了传统的减反的理论与方法; 侧重介绍了近几年来基于亚波长人工微结构材料的电磁波减反增透相关研究进展, 主要内容包括局域表面等离激元抑制光反射增强光耦合, 传播表面等离激元局域共振模式诱导高透隧穿, 超构材料诱导金属透明, 人工微结构超表面红外、太赫兹减反等若干典型工作; 探讨了亚波长人工微结构光学减反领域未来的发展方向与其所可能遇到的问题挑战.
    When light passes through an interface between two media with different refractive indices, part of light energy is reflected and thus causes an inevitable optical reflection. Optical anti-reflection is of great importance for applications in a wide range such as solar cells, optical lenses, infrared sensors, and photo-detectors, which has long been a research topic in the fields of optical systems and optoelectronic devices. In this article, the recent research progress of the optical anti-reflection based on subwavelength artificial engineering materials is reviewed. Having made a brief review of conventional anti-reflection methods, we focus on the overview of the newly developed techniques for optical anti-reflection, such as eliminating reflection by exciting the localized surface plasmons, the enhancement of transmission induced by the excitation of propagating surface plasmons, making metals transparent by the help of metamaterials, and the reduction of anti-reflection in long wavelength infrared and terahertz spectral ranges by using metasurfaces. Compared with the conventional anti-reflection methods, the new technique usually does not suffer the limitation of material, and it benefits from enhanced light absorption and wide incidence angle response. The new technique also enables the design of anti-reflection over wide or a multiple wavelength band. Finally, the future opportunities and challenges for further developing the subwavelength artificial engineering microstructures in optical anti-reflection are also predicted.
      通信作者: 郝加明, jiaming.hao@mail.sitp.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0205800)、国家自然科学基金(批准号: 61471345)和上海市“科技创新行动计划”(批准号: 16JC1403500)资助的课题.
      Corresponding author: Hao Jia-Ming, jiaming.hao@mail.sitp.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0205800), the National Natural Science Foundation of China (Grant No. 61471345), and the Shanghai Science and Technology Committee, China (Grant No. 16JC1403500).
    [1]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp38–49

    [2]

    Chattopadhyay S, Huang Y F, Jen Y J, Ganguly A, Chen K H, Chen L C 2010 Mat. Sci. Eng. 69 1Google Scholar

    [3]

    Raut H K, Ganesh V A, Nair A S, Ramakrishna S 2011 Energy Environ. Sci. 4 3779Google Scholar

    [4]

    Hedayati M K, Elbahri M 2016 Materials 9 497Google Scholar

    [5]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [6]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [7]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [8]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [9]

    Ozbay E 2006 Science 311 189Google Scholar

    [10]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773Google Scholar

    [11]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [12]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [13]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [14]

    Ramakrishna S A 2005 Rep. Prog. Phys. 68 449Google Scholar

    [15]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [16]

    Stetter F, Esselborn R, Harder N, Friz N, Tolles P 1976 Appl. Opt. 15 2315Google Scholar

    [17]

    Dobrowolski J S, Piotrowski H C 1982 Appl. Opt. 21 1502Google Scholar

    [18]

    刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕 2009 58 584992

    Liu Y S, Yang W H, Zhu Y Y, Chen J, Yang Z L, Yang J H 2009 Acta Phys. Sin. 58 584992

    [19]

    Epstein L V 1952 J. Opt. Soc. Am. 42 806Google Scholar

    [20]

    Dobrowolski J A, Poitras D, Ma P H, Vakil H, Acree M 2002 Appl. Opt. 41 3075Google Scholar

    [21]

    Poitras D, Dobrowolski J A 2004 Appl. Opt. 43 1286Google Scholar

    [22]

    Dobrowolski J A, Guo Y, Tiwald T, Ma P H, Poitras D 2006 Appl. Opt. 45 1555Google Scholar

    [23]

    Berning P H 1962 J. Opt. Soc. Am. 42 806

    [24]

    Minot M J 1976 J. Opt. Soc. Am. 66 515Google Scholar

    [25]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154Google Scholar

    [26]

    Branz H M, Yost V E, Ward S, Jones K M, To B, Stradins P 2009 Appl. Phys. Lett. 94 231121Google Scholar

    [27]

    Zhou W D, Tao M, Chen L, Yang H J 2007 J. Appl. Phys. 102 103105Google Scholar

    [28]

    Moharam M G, Gaylord T K 1983 J. Opt. Soc. Am. 73 1105Google Scholar

    [29]

    Abe M 1994 J. Opt. Soc. Am. 11 2038Google Scholar

    [30]

    Moharam M G, Gaylord T K 1982 J. Opt. Soc. Am. 72 1385Google Scholar

    [31]

    Sheldon B, Haggerty J S 1982 J. Opt. Soc. Am. 72 1049Google Scholar

    [32]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811Google Scholar

    [33]

    Motamedi M E, Southwell W H, Gunning W J 1992 Appl. Opt. 31 4371Google Scholar

    [34]

    Brauer R, Bryngdahl O 1994 Appl. Opt. 33 7875Google Scholar

    [35]

    Aspnes D E, Theeten J B 1979 Phys. Rev. B 20 3292Google Scholar

    [36]

    Chhajed S, Schubert M F, Kim J K, Schubert E F 2008 Appl. Phys. Lett. 93 251108Google Scholar

    [37]

    Sai H S, Fujii H, Arafune K, Ohshita Y, Yamaguchi M 2006 Appl. Phys. Lett. 88 201116Google Scholar

    [38]

    Southwell W H 1990 J. Opt. Soc. Am. 8 549

    [39]

    Kanamori Y, Roy E, Chen Y 2005 Microelectron. Eng. 78 287

    [40]

    Brückner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tünnermann A 2007 Opt. Express 15 779Google Scholar

    [41]

    Chen H L, Chuang S Y, Lin C H, Lin Y H 2007 Opt. Express 15 14793Google Scholar

    [42]

    Fan P X, Bai B F, Long J Y, Jiang D F, Jin G F, Zhang H J, Zhong M L 2015 Nano Lett. 15 5988Google Scholar

    [43]

    梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 62 037301Google Scholar

    Liang L, Xu Q F, Hu M L, Sun H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301Google Scholar

    [44]

    Mendoza-Galván A, Järrendahl K, Arwin H, Huang Y F, Chen L C Y, Chen K H 2009 Appl. Opt. 48 4996Google Scholar

    [45]

    Lee C, Bae S Y, Mobasser S, Manohara H 2005 Nano Lett. 5 2438Google Scholar

    [46]

    Hu L, Chen G 2007 Nano Lett. 7 3249Google Scholar

    [47]

    Lohmuller T, Helgert M, Sundermann M, Brunner R, Spatz J P 2008 Nano Lett. 8 1429Google Scholar

    [48]

    Muskens O L, Rivas J G, Algra R E, Bakkers E P A M, Lagendijk A 2008 Nano Lett. 8 2638Google Scholar

    [49]

    Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W P 2008 Nano Lett. 8 1505

    [50]

    Yang Z P, Ci L J, Bur J A, Lin S Y, Ajayan P M 2008 Nano Lett. 8 446Google Scholar

    [51]

    Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y 2009 Nano Lett. 9 279Google Scholar

    [52]

    Xie G Y, Zhang G M, Lin F, Zhang J, Liu Z F, Mu S C 2008 Nanotechnology 19 095605Google Scholar

    [53]

    Huang Y F, Chattopadhyay S, Jen Y J, Peng C Y, Liu T A, Hsu Y K, Pan C L, LoH C, Hsu C H, Chang Y H, Lee C S, Chen K H, Chen L C Y 2007 Nat. Nanotechnol. 2 770Google Scholar

    [54]

    Vukusic P, Sambles J R 2003 Nature 424 852Google Scholar

    [55]

    Kanamori Y, Sasaki M, Hane K 1998 Opt. Lett. 24 1422

    [56]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 Proc. R. Soc. B 273 661Google Scholar

    [57]

    Zhang G M, Zhang J, Xie G Y, Liu Z F, Shao H B 2006 Small 2 1440Google Scholar

    [58]

    Sun C H, Jiang P, Jiang B 2008 Appl. Phys. Lett. 92 061112Google Scholar

    [59]

    Bodena S A, Bagnall DM 2008 Appl. Phys. Lett. 93 133108Google Scholar

    [60]

    Clapham P B, Hutley M C 1973 Nature 244 281Google Scholar

    [61]

    Wilson S J, Hutley M C 2010 Opt. Acta 29 993

    [62]

    Walheim S, Schaffer E, Mlynek J, Steiner U 1999 Science 283 520Google Scholar

    [63]

    Rayleigh L 1879 Proc. London Math. Soc. 11 51

    [64]

    Jacobsson R 1966 in Wolf E Ed. Progress in Optics (Vol. 5) (Amsterdam: North-Holland) p247

    [65]

    Bernard C G 1967 Endeavour 26 79

    [66]

    Southwell W H 1983 Opt. Lett. 8 584Google Scholar

    [67]

    Xi J Q, Schubert M F, Kim J K, Schubert E F, Chen M F, Lin S Y, Liu W, Smart J A 2007 Nat. Photon. 1 176Google Scholar

    [68]

    Juan M L, Righini M, Quidant R 2011 Nat. Photon. 5 349Google Scholar

    [69]

    Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. Cells 37 337Google Scholar

    [70]

    Stuart H R, Hall D G 1996 Appl. Phys. Lett. 69 2327Google Scholar

    [71]

    Stuart H R, Hall D G 1998 Appl. Phys. Lett. 73 3815Google Scholar

    [72]

    Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar

    [73]

    Derkacs D, Lim S H, Matheu P, Mar W, Yu E T 2006 Appl. Phys. Lett. 89 093103Google Scholar

    [74]

    Matheu P, Lim S H, Derkacs D, McPheeters C, Yu E T 2008 Appl. Phys. Lett. 93 113108Google Scholar

    [75]

    Derkacs D, Chen W V, Matheu P M, Lim S H, Yu P K L, Yu E T 2008 Appl. Phys. Lett. 93 091107Google Scholar

    [76]

    Nakayama K, Tanabe K, Atwater H A 2008 Appl. Phys. Lett. 93 121904Google Scholar

    [77]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [78]

    Chen X, Fang J, Zhang X D, Zhao Y, Gu M 2017 ACS Photon. 4 2102Google Scholar

    [79]

    Basch A, Beck F J, Söderström T, Varlamov S, Catchpole K R 2012 Appl. Phys. Lett. 100 243903Google Scholar

    [80]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113Google Scholar

    [81]

    Starowicz Z, Lipinski M, Berent K, Socha R, Szczepanowicz K, Kruk T 2013 Plasmonics 8 41Google Scholar

    [82]

    Tan H R, Santbergen R, Smets A H M, Zeman M 2012 Nano Lett. 12 4070Google Scholar

    [83]

    Zhang Y N, Cai B Y, Jia B H 2016 Nano Mater. 6 95Google Scholar

    [84]

    Ho W J, Liu J H J, Yang Y C, Ho C H 2018 Nano Lett. 8 1003

    [85]

    Akimov Y A, Koh W S 2010 Nanotechnology 21 235201Google Scholar

    [86]

    Winans J D, Hungerford C, Shome K, Rothberg L J, Fauchet P M 2015 Opt. Express 23 A92Google Scholar

    [87]

    韩涛, 孟凡英, 张松, 汪建强, 程雪梅 2011 60 60027303

    Han T, Meng F Y, Zhang S, Wang J Q, Cheng X M 2011 Acta Phys. Sin. 60 60027303

    [88]

    Beck F J, Mokkapati S, Catchpole K R 2010 Prog. Photovolt. Res. Appl. 18 500Google Scholar

    [89]

    Lim S H, Mar W, Matheu P, Derkacs D, Yu E T 2007 J. Appl. Phys. 101 104309Google Scholar

    [90]

    Pillai S, Catchpole K R, Trupke T, Green M A 2007 J. Appl. Phys. 101 093105Google Scholar

    [91]

    Spinelli P, Polman A 2012 Opt. Express 20 A642

    [92]

    Ren X G, Cheng J Q, Zhang S Q, Li X C, Rao T K, Huo L J, Hou J H, Choy W C H 2016 Small 12 5200Google Scholar

    [93]

    Pala R A, White J, Barnard E, Liu J, Brongersma M L 2009 Adv. Mater. 21 3504Google Scholar

    [94]

    Fu Y Q, Ng S P, Qiu G Y, Hung T F, Wu C L, Lee C S 2017 Nanoscale 9 10940Google Scholar

    [95]

    Wan D H, Chen H L, Tseng T C, Fang C Y, Lai Y S, Yeh F Y 2010 Adv. Funct. Mater. 20 3064Google Scholar

    [96]

    Ferry V E, Sweatlock L A, Pacifici D, Atwater H A 2008 Nano Lett. 8 4391Google Scholar

    [97]

    Munday J N, Atwater H A 2011 Nano Lett. 11 2195Google Scholar

    [98]

    Zhou L, Tan Y L,Wang J Y, Xu W C, Yuan Y, Cai W S, Zhu S N, Zhu J 2016 Nat. Photon. 10 393Google Scholar

    [99]

    Green M A, Pillai S 2012 Nat. Photon. 6 130Google Scholar

    [100]

    Fan R H, Peng R W, Huang X R, Li J, Liu Y, Hu Q,Wang M, Zhang X 2012 Adv. Mater. 24 1980Google Scholar

    [101]

    Wen W J, Yang Z, Xu G, Chen Y H, Zhou L, Ge W K, Chan C T, Sheng P 2003 Appl. Phys. Lett. 83 2106Google Scholar

    [102]

    Wen W J, Zhou L, Hou B, Chan C T, Sheng P 2005 Phys. Rev. B 72 153406Google Scholar

    [103]

    Aközbek N, Mattiucci N, Ceglia D, Trimm R, Alù A, D’Aguanno G, Vincenti M A, Scalora M, Bloemer M J 2012 Phys. Rev. B 85 205430Google Scholar

    [104]

    Lee J W, Seo M A, Kang D H, Khim K S, Jeoung S C, Kim D S 2007 Phys. Rev. Lett. 99 137401Google Scholar

    [105]

    Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901Google Scholar

    [106]

    Weiner J 2009 Rep. Prog. Phys. 72 064401Google Scholar

    [107]

    Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779Google Scholar

    [108]

    Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401

    [109]

    Liu H T, Lalanne P 2008 Nature 452 728Google Scholar

    [110]

    Porto J A, García-Vidal F J, Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [111]

    Went H E, Hibbins A P, Sambles J R 2000 Appl. Phys. Lett. 77 2789Google Scholar

    [112]

    Ruan Z C, Qiu M 2006 Phys. Rev. Lett. 96 233901

    [113]

    Alù A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902

    [114]

    Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444Google Scholar

    [115]

    Pacheco Jr J, Grzegorczyk T M, Wu BI, Zhang Y, Kong J A 2002 Phys. Rev. Lett. 89 257401

    [116]

    Pendry J B 2003 Nature 423 22Google Scholar

    [117]

    Foteinopoulou S, Economou E N, Soukoulis C M 2003 Phys. Rev. Lett. 90 107402

    [118]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Nature 423 604

    [119]

    Parimi P V, Lu W T, Vodo P, Sridhar S 2003 Nature 426 404Google Scholar

    [120]

    Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A, Anand S 2004 Phys. Rev. Lett. 93 073902

    [121]

    Pendry J B 2004 Science 306 1353Google Scholar

    [122]

    Chena H S, Ran L X, Huangfu J, Zhang X M, Chen K S 2005 Appl. Phys. Lett. 86 151909

    [123]

    Shin H, Fan S H 2006 Phys. Rev. Lett. 96 239903

    [124]

    Lezec H J, Dionne J A, Atwater H A 2007 Science 316 430Google Scholar

    [125]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [126]

    Khorasaninejad M, Capasso F 2017 Science 358 6367

    [127]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [128]

    Pendry J B, Ramakrishna S A 2003 Physica B 338 329Google Scholar

    [129]

    Ramakrishna S A 2005 Rep. Prog. Phys. 338 329

    [130]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [131]

    Cummer S A, Popa BI, Schurig D, Smith D R, Pendry J B 2006 Phys. Rev. E 74 036621Google Scholar

    [132]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [133]

    Chen H S, Wu B-I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [134]

    Li J S, Pendry J B 2008 Phys. Rev. Lett. 101 203901Google Scholar

    [135]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [136]

    Chin J Y, Lu M Z, Cui T J 2008 Appl. Phys. Lett. 93 251903

    [137]

    Zhu B, Feng Y J, Zhao J M, Huang C, Wang Z B, Jiang T 2010 Opt. Express 18 23196

    [138]

    Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907Google Scholar

    [139]

    Alici K B, Turhan A B, Soukoulis C M, Ozbay E 2011 Opt. Express 19 14260Google Scholar

    [140]

    Zhang B X, Zhao Y H, Hao Q Z, Kiraly B, Khoo I C, Chen S F, Huang T J 2011 Opt. Express 19 15221Google Scholar

    [141]

    Shrestha S, Wang Yu, Overvig A C, Lu M, Stein A, Negro L D, Yu N F 2018 ACS Photon. 5 3526Google Scholar

    [142]

    Hao J M, Wang J, Liu X L,Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [143]

    Bhattarai K, Ku Z Y, Silva S, Jeon J Y, Kim J O, Lee S J, Urbas A, Zhou J F 2015 Adv. Opt. Mater. 3 1779Google Scholar

    [144]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517Google Scholar

    [145]

    Hao J M, Qiu C W, Qiu M, Zouhdi S 2012 Opt. Lett. 37 4955Google Scholar

    [146]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [147]

    Zou Y H, Jiang L, Wena S C, Shu W X, Qing Y J, Tang Z X, Luo H L, Fan D Y 2008 Appl. Phys. Lett. 93 26115

    [148]

    Wena Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [149]

    Yang J, Hu X H, Li X, Liu Z, Liang Z X, Jiang X Y, Zi J 2009 Phys. Rev. B 80 125103Google Scholar

    [150]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [151]

    Lu J L, Yu W W, Zhang X D, Xu H, Hao J M, Sun Y, Chen X, Meng X J, Dai N, Chu J H 2018 J. Infrared Millim Waves 37 740

    [152]

    潘晓航, 许昊, 俞伟伟, 沈宏, 郝加明, 孙艳, 沈悦, 孟祥建, 戴宁 2019 红外与毫米波学报 38 50Google Scholar

    Pan X H, Xu H, Yu W W, Shen H, Hao J M, Sun Y, Shen Y, Meng X J, Dai N 2019 J. Infrared Millim Waves 38 50Google Scholar

    [153]

    Zhou L, Wen W J, Chan C T, Sheng P 2005 Phys. Rev. Lett. 94 243905Google Scholar

    [154]

    Song Z Y, He Q, Xiao S Y, Zhou L 2012 Appl. Phys. Lett. 101 181110Google Scholar

    [155]

    Korobkin D, Urzhumov Y, Shvets G 2006 J. Opt. Soc. Am. B 23 468

    [156]

    Hooper I R, Priest T W, Sambles J R 2006 Phys. Rev. Lett. 97 053902Google Scholar

    [157]

    Malureanu R, Zalkovskij M, Song Z Y, Gritti C, Andryieuski A, He Q, Zhou L, Jepsen P U, Lavrinenko A V 2012 Opt. Express 20 22770Google Scholar

    [158]

    Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927Google Scholar

    [159]

    Thoman A, Kern A, Helm H, Walther M 2008 Phys. Rev. B 77 195405Google Scholar

    [160]

    Ding L, Wu Q Y S, Song J F, Serita K, Tonouchi M, Teng J H 2013 Adv. Opt. Mater. 1 910Google Scholar

    [161]

    Ding L, Wu Q Y S, Teng J H 2014 Laser Photon. Rev. 8 941Google Scholar

    [162]

    Zhang J, Ade P A R, Mauskopf P, Moncelsi L, Savini G, Whitehouse N 2009 Appl. Opt. 48 6635Google Scholar

    [163]

    Chen H T, Zhou J F, O’Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [164]

    Chen H T, Zhou J F, O’Hara J F, Taylor A J 2010 THz Sci. Tech. 3 66

    [165]

    Park M S, Bhattarai K, Kim D K, Kang S W, Kim J O, Zhou J F, Jang W Y, Noyola M, Urbas A, Ku Z Y, Lee S J 2014 Opt. Express 22 30161Google Scholar

    [166]

    Hedayati M K, Abdelaziz M, Etrich C, Homaeigohar S, Rockstuhlm C, Elbahri M 2016 Materials 9 636Google Scholar

    [167]

    Jeon J Y, Bhattarai K, Kim D K, Kim J O, Urbas A, Lee S J, Ku Z Y, Zhou J F 2016 Sci. Rep. 6 36190Google Scholar

    [168]

    Cordaro A, Groep J V D, Raza S, Pecora E F, Priolo F, Brongersma M L 2019 ACS Photon. 6 453Google Scholar

    [169]

    Jeon J Y, Hwang J W, Bhattarai K, Kim D K, Kim O J, Urbas A, Zhou J F,Ku Z Y, Lee S J 2019 Opt. Mat. Express 9 1290Google Scholar

    [170]

    Kabiri A, Girgis E, Capasso F 2013 Nano Lett. 13 6040Google Scholar

    [171]

    Zhang B Y, Hendrickson J, Nader N, Chen H T, Guo J P 2014 Appl. Phys. Lett. 105 241113Google Scholar

    [172]

    Huang L, Chang C C, Zeng B B, Nogan J, Luo S N, Taylor A J, Azad A K, Chen H T 2017 ACS Photon. 4 2111Google Scholar

    [173]

    Zhao J, Zhang C, Cheng Q, Yang J, Cui T J 2018 Appl. Phys. Lett. 112 073504Google Scholar

  • 图 1  单层减反膜原理示意图

    Fig. 1.  Schematic of a single thin film anti-reflection coating

    图 2  (a)两种不同配比下的有机聚合物混合的多纳米孔结构的原子力显微镜图; (b)等效折射率关于聚合物参比成分的函数曲线; (c)将不同配比的两种减反层覆盖于显微镜镜片两侧后, 镜片的透射率关于波长的曲线[62]

    Fig. 2.  (a) Atomic force microscope images of two porous PMMA films, after spin-casting of a PS- PMMA-THF mixture onto silicon oxide surfaces; (b) variation of the refractive index as a function of polymer composition; (c) light transmission versus wavelength of microscope glass slides that were covered on both sides with AR layer[62].

    图 3  (a)上图为利用快速原子束刻蚀过的硅表面的扫描显微镜图, 下图为不同周期的二维硅金字塔结构反射率的模拟计算结果[37]; (b)上图为表面平整的硅晶圆 (黑色实线)与高度L = 1.6 μm (绿色标记), 5.5 μm (蓝色标记)和16 μm (红色标记)的SiNTs在紫外-可见-近红外波段反射率的对比, 其中左侧插图为高度L = 1.6 μm SiNTs的SEM侧视图, 下图为表面平整的硅晶圆 (黑色实线)与高度L = 16 μm (红色标记)的SiNTs在远红外波段反射率的对比, 其中左上方插图为高度L = 16 μm SiNTs的SEM侧视图[53]

    Fig. 3.  (a) Top panel is the scanning microscope photographs of the Si surface after FAB etching, bottom panel is the calculated spectral reflectivity of two-dimensional Si pyramid gratings with different periodicities[37]; (b) top panel is comparison of the reflectance as a function of wavelength for a planar Si wafer (solid line, black) and SiNTs (symbols) for L = 1.6 μm (green), 5.5 μm (blue) and 16 μm (red) at UV, VIS and NIR wavelengths, inset in top panel shows the cross-sectional SEM image of the L = 1.6 μm SiNTs; bottom panel is comparison of specular reflectance as a function of wavelength for a planar silicon wafer (solid line, black) and SiNTs with L = 16 μm (red) in the far-infrared regions, inset in bottom panel shows the cross-sectional SEM image of the L = 16 μm SiNTs[53].

    图 4  (a)折射率随入射深度以线性、三次方、五次方形式渐变的曲线的对比[66]; (b)由三层TiO2纳米棒结构和两层SiO2纳米棒层构成的折射率成五次方形式渐变的多层膜的SEM截面图与结构示意图, 下面的表格中为五层膜体系中各层膜的详细信息; (c)正入射条件下的梯度折射率减反膜的反射谱, 其中实线为理论计算值, 虚线为实验测量值[67]

    Fig. 4.  (a) Linear-, cubicandquintic-index profiles that have index matching with air[66]; (b) cross-sectional SEM image of graded-index coating with a modified-quintic-index profile, the graded-indexcoating consists of three TiO2 nanorod layers and two SiO2 nanorod layers; (c) wavelength dependence of theoretical (solid line) and measured (dashed line) reflectivity of graded-index coating at normal incidence[67].

    图 5  (a) 金属纳米颗粒增强绝缘硅薄膜探测器的结构示意图; (b)不同金属纳米颗粒光电流增强系数的实验测量值, 增强系数定义为存在/不存在金属纳米颗粒的探测器的光电流之比[70]; (c)金属纳米颗粒制备生长于器件的表面, 光通过多重和高角度散射被诱捕进入了下层的硅材料中; (d)嵌埋半导体材料中的金属纳米颗粒引起的局域表面等离激元与半导体材料进行近场耦合, 从而增强了材料的光吸收[77]

    Fig. 5.  (a) SOI photodetector with metal island film; (b) measured enhancements due to the presence of the metal island layer, enhancement is defined as the ratio of the photocurrent of the device with the islands to that without the islands[70]; (c) light trapping by scattering from metal nanoparticles at the surface of the solar cell, light is preferentially scattered and trapped into the semiconductor thin film by multiple and high-angle scattering, causing an increase in the effective optical path length in the cell; (d) light trapping by the excitation of localized surface plasmons in metal nanoparticles embedded in the semiconductor, the excited particles’ near-field causes the enhancement of light absorption in the semiconductor[77].

    图 6  (a) 上图为周期性亚波长金属薄膜的扫描电子显微镜图, 下图是厚度为200 nm的银薄膜的正入射条件下的零阶透射谱(周期为900 nm, 孔直径为150 nm)[5]; (b)上图为周期性亚波长金属薄膜的正入射透射照片, 下图为三种不同几何结构孔阵列的透射谱, 其中蓝线、绿线和红线所对应的周期分别为300, 450和550 nm, 孔的直径分别为155, 180和255 nm, 而它们的透射峰值分别为436, 538和627 nm[6]

    Fig. 6.  (a) Top panel is sample picture of an optically thick metal films perforated with a periodic array of subwavelength apertures, bottom panel is zero-order transmission of 200 nm thick Ag film (periodicity of air holes 900 nm; hole diameter 150 nm) at normal incidence[5]; (b) top panel is normal incidence transmission images for subwavelength holes, bottom panel is normal incidence transmission spectra for three square arrays of subwavelength holes. For the blue, green and red arrays, the periods were 300, 450 and 550 nm, respectively, the hole diameters were 155, 180 and 225 nm and the peak transmission wavelengths 436, 538 and 627 nm[6].

    图 7  (a) 左图为斜入射条件下导电光栅的光透射的示意图, 其中$E_{\rm{w}}^{{\rm{in}}}$$E_\parallel ^{{\rm{in}}}$分别为Ein在表面和侧壁上的投影, 右图为不同周期下的金属光栅的透射率, 内置图为周期为10 µm时的光栅结构的反射图[105]; (b) 左图为光栅结构的光学照片, 其中右上方插图为截面图, 右图为实验测量的太赫兹波段的角分辨透射谱[100]; (c) 左图为金属光栅结构的几何示意图, 右图为为实验测量的微波波段的角分辨透射谱[103]

    Fig. 7.  (a) Left panel is light transmission through conducting gratings, oblique incidence under the flat transmission condition, $E_{\rm{w}}^{{\rm{in}}}$ and $E_\parallel ^{{\rm{in}}}$ are the projections of Ein onto the surface and the slit wall, respectively, right panel is transmission spectra of a gold grating of different periods and the incidence angle is 84°, the inset shows the reflectivity for period of 10 μm[105]; (b) left panel is optical image of the grating, the insert shows the cross section, right panel is experimentally measured angular transmission spectra of the gold gratings in THz region[100]; (c) left panel is geometry of the metal grating, right panel is experimentally measured angular transmission spectra of the metal gratings in microwave region[103].

    图 8  (a) 氧化硅衬底上生长金属立方体阵列的结构示意图; (b) 在入射角分别为0°和68°时, 计算得到的透射谱, 其中几何结构为dx = dy = 320 nm, wx = wy = 80 nm, h = 320 nm, ns = 1.47; (c), (d) 金属立方体与氧化硅衬底结构中心位置的电场(|E|2)分布的截面图(c)入射角为0°, 此时入射波长为1020 nm, (d) 入射角为68°, 此时入射波长为1600 nm时[114]

    Fig. 8.  (a) Schematic of metallic cuboids on a glass substrate; (b) calculated transmission spectra under incidence of 0° and 68°, dx = dy = 320 nm, wx = wy = 80 nm, h =320 nm, and ns = 1.47; (c), (d) the cross-sectional distribution of electric fields (|E|2) at the center of the cuboids (y = 120 nm): (c) θ = 0° at λ = 1020 nm; (d) θ = 68° at λ = 1600 nm[114].

    图 9  (a) 通过有效媒质理论计算出来的高透射频段的ABA结构内的磁场分布图; (b) 实验测量 (圆圈)与计算得到(实线)的实际ABA结构样品的透射谱, 插图为遵循超构材料的基本精神构造的等效A, B材料的结构示意图, 其中金属网格和“工”字型分别代表在微波波段具有负介电常数ε的B材料与正介电常数ε的材料[153]

    Fig. 9.  (a) Normalized magnetic field distribution inside the ABA structure at the high transmission frequency obtained by effective medium level calculation; (b) measured (circles) and calculated (lines) transmission spectra of a practical ABA sample, following the spirit of metamaterials, the subwavelength metallic mesh structures and H-shaped resonators (inset) are adopted to realize respectively the desired B layer with negative ε and A layers with positive ε at the working frequencies[153].

    图 10  (a) 上图为太赫兹脉冲通过存在/不存在减反层硅衬底的示意图, 与实验测试一致; 中图为化学沉积方法生长的金薄膜; 下图为太赫兹时域光谱仪测得的透射信号[159]; (b)上图为太赫兹测试实验示意图; 中图为铬金属光栅的扫描电子显微镜图; 下图为正入射条件下的太赫兹时域光谱仪测得的透射谱[160]; (c) 上图为太赫兹测试实验示意图; 中图为铬金属正方形网格结构的扫描电子显微镜图; 下图为正入射条件下的太赫兹时域光谱仪测得的透射谱[161]

    Fig. 10.  (a) Top panel is illustration of Terahertz-pulse propagation through the uncoated and coated silicon substrate, as measured in our experiment, middle panel is AFM images of a chemically deposited gold film, bottom panel is Terahertz time-domain spectrometer (TDS) transmission signals[159]; (b) top panel is schematic diagram of the THz measurement, middle panel is SEM picture of a Cr grating on Si, bottom panel is THz TDS transmission signals under normal incidence[160]; (c) top panel is a schematic of the THz measurement, middle panel is SEM picture of a Cr mesh on Si, bottom panel is THz TDS transmission signals under normal incidence[161]

    图 11  (a) 人工复合介质结构的示意图; (b)存在减反层的石英盘的透射谱[162]

    Fig. 11.  (a) Basic structure of the artificial dielectric; (b) transmission of the complete ARC quartz plate[162].

    图 12  (a) 左图为超材料减反层中干涉模型以及相关变量, 中图为超材料减反层的结构示意图, 右图为正入射条件下实验测得的反射谱与透射谱[163]; (b) 左图为覆盖介质层下埋入金属纳米结构的减反机理示意图, 中图为方块天线结构的SEM图, 展示了四层结构, 分别为L1刻蚀有图案的衬底、L2嵌入式纳米金属天线结构、L3覆盖介质层为100 nm的多晶硅、L4覆盖介质层为500 nm的多晶硅, 右图为实验测得的反射谱[170]; (c) 左图为超表面减反结构中的多重反射的示意图, 中图为锗衬底上的超表面减反结构示意图, 右图为金十字架共振体的数值模拟计算 (虚线)和实验测量 (实线)的透射谱 (T)与反射谱 (R), 其中内置图单元结构的SEM图[171]

    Fig. 12.  (a) Left panel is illustration of interference model of the metamaterial antireflection coating and associated variables, middle panel is schematic design of the metamaterial antireflection coating, right panel is experimentally measured reflectance and transmittance under normal incidence.[163] (b) Left panel is schematic of antireflection mechanism, middle panel is SEM images for square nanoantennas. SEM images demonstrate the following four layers: L1, patterned substrate; L2, embedded nanoantennas; L3, covered amorphous silicon layer (100 nm); and L4, covered amorphous silicon (500 nm). Right panel is measured reflectance for square nanoantennas[170]. (c) Left panel is schematic of multireflection within the metasurface antireflection structure, middle panel: is schematic of the metasurface antireflection coating on a germanium substrate, right panel is experimentally measured and nume-rically simulated metasurface antireflection performance, the optical reflectance (R) and transmittance (T) spectra at normal inci-dence are plotted as solid curves for experiments and dotted curves for simulations. Insets: SEM images of the unit cells[171].

    图 13  (a) 上图为双层超表面减反层的十字枕结构单元示意图, 每个单元由顶层的金的十字架共振体、底层的金十字槽和硅的十字枕三部分构成, 下图为十字枕结构单元SEM假色(false-colored)图(比例尺: 50 μm); (b) 中红外波段双层超表面结构的透射和反射谱的模拟计算值与实验测量值; (c) 太赫兹波段具有不同十字长度L的双层超表面结构对应的透射谱和反射谱的实验测量值(右侧); (b), (c)图中由小点构成的线是裸硅片的透射谱和反射谱[172]

    Fig. 13.  (a) Top panel is unit cell schematic of the bilayer metasurface structure consisting of top gold cross resonator, bottom gold cross-slot, and silicon cross-pillar, bottom panel is false-colored SEM image of the unit cell (scale bar: 50 μm); (b) bilayer antireflection metasurface at mid-infrared wavelengths, measured reflection and transmission spectra; (c) bilayer antireflection metasurface at THz wavelengths, reflection and transmission measured in experiments for three different values of cross-length L; (b) and (c) dotted lines are reflection and transmission for a bare silicon surface[172].

    Baidu
  • [1]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp38–49

    [2]

    Chattopadhyay S, Huang Y F, Jen Y J, Ganguly A, Chen K H, Chen L C 2010 Mat. Sci. Eng. 69 1Google Scholar

    [3]

    Raut H K, Ganesh V A, Nair A S, Ramakrishna S 2011 Energy Environ. Sci. 4 3779Google Scholar

    [4]

    Hedayati M K, Elbahri M 2016 Materials 9 497Google Scholar

    [5]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [6]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [7]

    Genet C, Ebbesen T W 2007 Nature 445 39Google Scholar

    [8]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [9]

    Ozbay E 2006 Science 311 189Google Scholar

    [10]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773Google Scholar

    [11]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075Google Scholar

    [12]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184Google Scholar

    [13]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77Google Scholar

    [14]

    Ramakrishna S A 2005 Rep. Prog. Phys. 68 449Google Scholar

    [15]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [16]

    Stetter F, Esselborn R, Harder N, Friz N, Tolles P 1976 Appl. Opt. 15 2315Google Scholar

    [17]

    Dobrowolski J S, Piotrowski H C 1982 Appl. Opt. 21 1502Google Scholar

    [18]

    刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕 2009 58 584992

    Liu Y S, Yang W H, Zhu Y Y, Chen J, Yang Z L, Yang J H 2009 Acta Phys. Sin. 58 584992

    [19]

    Epstein L V 1952 J. Opt. Soc. Am. 42 806Google Scholar

    [20]

    Dobrowolski J A, Poitras D, Ma P H, Vakil H, Acree M 2002 Appl. Opt. 41 3075Google Scholar

    [21]

    Poitras D, Dobrowolski J A 2004 Appl. Opt. 43 1286Google Scholar

    [22]

    Dobrowolski J A, Guo Y, Tiwald T, Ma P H, Poitras D 2006 Appl. Opt. 45 1555Google Scholar

    [23]

    Berning P H 1962 J. Opt. Soc. Am. 42 806

    [24]

    Minot M J 1976 J. Opt. Soc. Am. 66 515Google Scholar

    [25]

    Raguin D H, Morris G M 1993 Appl. Opt. 32 1154Google Scholar

    [26]

    Branz H M, Yost V E, Ward S, Jones K M, To B, Stradins P 2009 Appl. Phys. Lett. 94 231121Google Scholar

    [27]

    Zhou W D, Tao M, Chen L, Yang H J 2007 J. Appl. Phys. 102 103105Google Scholar

    [28]

    Moharam M G, Gaylord T K 1983 J. Opt. Soc. Am. 73 1105Google Scholar

    [29]

    Abe M 1994 J. Opt. Soc. Am. 11 2038Google Scholar

    [30]

    Moharam M G, Gaylord T K 1982 J. Opt. Soc. Am. 72 1385Google Scholar

    [31]

    Sheldon B, Haggerty J S 1982 J. Opt. Soc. Am. 72 1049Google Scholar

    [32]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811Google Scholar

    [33]

    Motamedi M E, Southwell W H, Gunning W J 1992 Appl. Opt. 31 4371Google Scholar

    [34]

    Brauer R, Bryngdahl O 1994 Appl. Opt. 33 7875Google Scholar

    [35]

    Aspnes D E, Theeten J B 1979 Phys. Rev. B 20 3292Google Scholar

    [36]

    Chhajed S, Schubert M F, Kim J K, Schubert E F 2008 Appl. Phys. Lett. 93 251108Google Scholar

    [37]

    Sai H S, Fujii H, Arafune K, Ohshita Y, Yamaguchi M 2006 Appl. Phys. Lett. 88 201116Google Scholar

    [38]

    Southwell W H 1990 J. Opt. Soc. Am. 8 549

    [39]

    Kanamori Y, Roy E, Chen Y 2005 Microelectron. Eng. 78 287

    [40]

    Brückner C, Pradarutti B, Stenzel O, Steinkopf R, Riehemann S, Notni G, Tünnermann A 2007 Opt. Express 15 779Google Scholar

    [41]

    Chen H L, Chuang S Y, Lin C H, Lin Y H 2007 Opt. Express 15 14793Google Scholar

    [42]

    Fan P X, Bai B F, Long J Y, Jiang D F, Jin G F, Zhang H J, Zhong M L 2015 Nano Lett. 15 5988Google Scholar

    [43]

    梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 62 037301Google Scholar

    Liang L, Xu Q F, Hu M L, Sun H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301Google Scholar

    [44]

    Mendoza-Galván A, Järrendahl K, Arwin H, Huang Y F, Chen L C Y, Chen K H 2009 Appl. Opt. 48 4996Google Scholar

    [45]

    Lee C, Bae S Y, Mobasser S, Manohara H 2005 Nano Lett. 5 2438Google Scholar

    [46]

    Hu L, Chen G 2007 Nano Lett. 7 3249Google Scholar

    [47]

    Lohmuller T, Helgert M, Sundermann M, Brunner R, Spatz J P 2008 Nano Lett. 8 1429Google Scholar

    [48]

    Muskens O L, Rivas J G, Algra R E, Bakkers E P A M, Lagendijk A 2008 Nano Lett. 8 2638Google Scholar

    [49]

    Lee Y J, Ruby D S, Peters D W, McKenzie B B, Hsu J W P 2008 Nano Lett. 8 1505

    [50]

    Yang Z P, Ci L J, Bur J A, Lin S Y, Ajayan P M 2008 Nano Lett. 8 446Google Scholar

    [51]

    Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y 2009 Nano Lett. 9 279Google Scholar

    [52]

    Xie G Y, Zhang G M, Lin F, Zhang J, Liu Z F, Mu S C 2008 Nanotechnology 19 095605Google Scholar

    [53]

    Huang Y F, Chattopadhyay S, Jen Y J, Peng C Y, Liu T A, Hsu Y K, Pan C L, LoH C, Hsu C H, Chang Y H, Lee C S, Chen K H, Chen L C Y 2007 Nat. Nanotechnol. 2 770Google Scholar

    [54]

    Vukusic P, Sambles J R 2003 Nature 424 852Google Scholar

    [55]

    Kanamori Y, Sasaki M, Hane K 1998 Opt. Lett. 24 1422

    [56]

    Stavenga D G, Foletti S, Palasantzas G, Arikawa K 2006 Proc. R. Soc. B 273 661Google Scholar

    [57]

    Zhang G M, Zhang J, Xie G Y, Liu Z F, Shao H B 2006 Small 2 1440Google Scholar

    [58]

    Sun C H, Jiang P, Jiang B 2008 Appl. Phys. Lett. 92 061112Google Scholar

    [59]

    Bodena S A, Bagnall DM 2008 Appl. Phys. Lett. 93 133108Google Scholar

    [60]

    Clapham P B, Hutley M C 1973 Nature 244 281Google Scholar

    [61]

    Wilson S J, Hutley M C 2010 Opt. Acta 29 993

    [62]

    Walheim S, Schaffer E, Mlynek J, Steiner U 1999 Science 283 520Google Scholar

    [63]

    Rayleigh L 1879 Proc. London Math. Soc. 11 51

    [64]

    Jacobsson R 1966 in Wolf E Ed. Progress in Optics (Vol. 5) (Amsterdam: North-Holland) p247

    [65]

    Bernard C G 1967 Endeavour 26 79

    [66]

    Southwell W H 1983 Opt. Lett. 8 584Google Scholar

    [67]

    Xi J Q, Schubert M F, Kim J K, Schubert E F, Chen M F, Lin S Y, Liu W, Smart J A 2007 Nat. Photon. 1 176Google Scholar

    [68]

    Juan M L, Righini M, Quidant R 2011 Nat. Photon. 5 349Google Scholar

    [69]

    Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. Cells 37 337Google Scholar

    [70]

    Stuart H R, Hall D G 1996 Appl. Phys. Lett. 69 2327Google Scholar

    [71]

    Stuart H R, Hall D G 1998 Appl. Phys. Lett. 73 3815Google Scholar

    [72]

    Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar

    [73]

    Derkacs D, Lim S H, Matheu P, Mar W, Yu E T 2006 Appl. Phys. Lett. 89 093103Google Scholar

    [74]

    Matheu P, Lim S H, Derkacs D, McPheeters C, Yu E T 2008 Appl. Phys. Lett. 93 113108Google Scholar

    [75]

    Derkacs D, Chen W V, Matheu P M, Lim S H, Yu P K L, Yu E T 2008 Appl. Phys. Lett. 93 091107Google Scholar

    [76]

    Nakayama K, Tanabe K, Atwater H A 2008 Appl. Phys. Lett. 93 121904Google Scholar

    [77]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [78]

    Chen X, Fang J, Zhang X D, Zhao Y, Gu M 2017 ACS Photon. 4 2102Google Scholar

    [79]

    Basch A, Beck F J, Söderström T, Varlamov S, Catchpole K R 2012 Appl. Phys. Lett. 100 243903Google Scholar

    [80]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113Google Scholar

    [81]

    Starowicz Z, Lipinski M, Berent K, Socha R, Szczepanowicz K, Kruk T 2013 Plasmonics 8 41Google Scholar

    [82]

    Tan H R, Santbergen R, Smets A H M, Zeman M 2012 Nano Lett. 12 4070Google Scholar

    [83]

    Zhang Y N, Cai B Y, Jia B H 2016 Nano Mater. 6 95Google Scholar

    [84]

    Ho W J, Liu J H J, Yang Y C, Ho C H 2018 Nano Lett. 8 1003

    [85]

    Akimov Y A, Koh W S 2010 Nanotechnology 21 235201Google Scholar

    [86]

    Winans J D, Hungerford C, Shome K, Rothberg L J, Fauchet P M 2015 Opt. Express 23 A92Google Scholar

    [87]

    韩涛, 孟凡英, 张松, 汪建强, 程雪梅 2011 60 60027303

    Han T, Meng F Y, Zhang S, Wang J Q, Cheng X M 2011 Acta Phys. Sin. 60 60027303

    [88]

    Beck F J, Mokkapati S, Catchpole K R 2010 Prog. Photovolt. Res. Appl. 18 500Google Scholar

    [89]

    Lim S H, Mar W, Matheu P, Derkacs D, Yu E T 2007 J. Appl. Phys. 101 104309Google Scholar

    [90]

    Pillai S, Catchpole K R, Trupke T, Green M A 2007 J. Appl. Phys. 101 093105Google Scholar

    [91]

    Spinelli P, Polman A 2012 Opt. Express 20 A642

    [92]

    Ren X G, Cheng J Q, Zhang S Q, Li X C, Rao T K, Huo L J, Hou J H, Choy W C H 2016 Small 12 5200Google Scholar

    [93]

    Pala R A, White J, Barnard E, Liu J, Brongersma M L 2009 Adv. Mater. 21 3504Google Scholar

    [94]

    Fu Y Q, Ng S P, Qiu G Y, Hung T F, Wu C L, Lee C S 2017 Nanoscale 9 10940Google Scholar

    [95]

    Wan D H, Chen H L, Tseng T C, Fang C Y, Lai Y S, Yeh F Y 2010 Adv. Funct. Mater. 20 3064Google Scholar

    [96]

    Ferry V E, Sweatlock L A, Pacifici D, Atwater H A 2008 Nano Lett. 8 4391Google Scholar

    [97]

    Munday J N, Atwater H A 2011 Nano Lett. 11 2195Google Scholar

    [98]

    Zhou L, Tan Y L,Wang J Y, Xu W C, Yuan Y, Cai W S, Zhu S N, Zhu J 2016 Nat. Photon. 10 393Google Scholar

    [99]

    Green M A, Pillai S 2012 Nat. Photon. 6 130Google Scholar

    [100]

    Fan R H, Peng R W, Huang X R, Li J, Liu Y, Hu Q,Wang M, Zhang X 2012 Adv. Mater. 24 1980Google Scholar

    [101]

    Wen W J, Yang Z, Xu G, Chen Y H, Zhou L, Ge W K, Chan C T, Sheng P 2003 Appl. Phys. Lett. 83 2106Google Scholar

    [102]

    Wen W J, Zhou L, Hou B, Chan C T, Sheng P 2005 Phys. Rev. B 72 153406Google Scholar

    [103]

    Aközbek N, Mattiucci N, Ceglia D, Trimm R, Alù A, D’Aguanno G, Vincenti M A, Scalora M, Bloemer M J 2012 Phys. Rev. B 85 205430Google Scholar

    [104]

    Lee J W, Seo M A, Kang D H, Khim K S, Jeoung S C, Kim D S 2007 Phys. Rev. Lett. 99 137401Google Scholar

    [105]

    Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901Google Scholar

    [106]

    Weiner J 2009 Rep. Prog. Phys. 72 064401Google Scholar

    [107]

    Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779Google Scholar

    [108]

    Barnes W L, Murray W A, Dintinger J, Devaux E, Ebbesen T W 2004 Phys. Rev. Lett. 92 107401

    [109]

    Liu H T, Lalanne P 2008 Nature 452 728Google Scholar

    [110]

    Porto J A, García-Vidal F J, Pendry J B 1999 Phys. Rev. Lett. 83 2845

    [111]

    Went H E, Hibbins A P, Sambles J R 2000 Appl. Phys. Lett. 77 2789Google Scholar

    [112]

    Ruan Z C, Qiu M 2006 Phys. Rev. Lett. 96 233901

    [113]

    Alù A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902

    [114]

    Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444Google Scholar

    [115]

    Pacheco Jr J, Grzegorczyk T M, Wu BI, Zhang Y, Kong J A 2002 Phys. Rev. Lett. 89 257401

    [116]

    Pendry J B 2003 Nature 423 22Google Scholar

    [117]

    Foteinopoulou S, Economou E N, Soukoulis C M 2003 Phys. Rev. Lett. 90 107402

    [118]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Nature 423 604

    [119]

    Parimi P V, Lu W T, Vodo P, Sridhar S 2003 Nature 426 404Google Scholar

    [120]

    Berrier A, Mulot M, Swillo M, Qiu M, Thylén L, Talneau A, Anand S 2004 Phys. Rev. Lett. 93 073902

    [121]

    Pendry J B 2004 Science 306 1353Google Scholar

    [122]

    Chena H S, Ran L X, Huangfu J, Zhang X M, Chen K S 2005 Appl. Phys. Lett. 86 151909

    [123]

    Shin H, Fan S H 2006 Phys. Rev. Lett. 96 239903

    [124]

    Lezec H J, Dionne J A, Atwater H A 2007 Science 316 430Google Scholar

    [125]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [126]

    Khorasaninejad M, Capasso F 2017 Science 358 6367

    [127]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [128]

    Pendry J B, Ramakrishna S A 2003 Physica B 338 329Google Scholar

    [129]

    Ramakrishna S A 2005 Rep. Prog. Phys. 338 329

    [130]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [131]

    Cummer S A, Popa BI, Schurig D, Smith D R, Pendry J B 2006 Phys. Rev. E 74 036621Google Scholar

    [132]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [133]

    Chen H S, Wu B-I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903

    [134]

    Li J S, Pendry J B 2008 Phys. Rev. Lett. 101 203901Google Scholar

    [135]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [136]

    Chin J Y, Lu M Z, Cui T J 2008 Appl. Phys. Lett. 93 251903

    [137]

    Zhu B, Feng Y J, Zhao J M, Huang C, Wang Z B, Jiang T 2010 Opt. Express 18 23196

    [138]

    Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907Google Scholar

    [139]

    Alici K B, Turhan A B, Soukoulis C M, Ozbay E 2011 Opt. Express 19 14260Google Scholar

    [140]

    Zhang B X, Zhao Y H, Hao Q Z, Kiraly B, Khoo I C, Chen S F, Huang T J 2011 Opt. Express 19 15221Google Scholar

    [141]

    Shrestha S, Wang Yu, Overvig A C, Lu M, Stein A, Negro L D, Yu N F 2018 ACS Photon. 5 3526Google Scholar

    [142]

    Hao J M, Wang J, Liu X L,Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [143]

    Bhattarai K, Ku Z Y, Silva S, Jeon J Y, Kim J O, Lee S J, Urbas A, Zhou J F 2015 Adv. Opt. Mater. 3 1779Google Scholar

    [144]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517Google Scholar

    [145]

    Hao J M, Qiu C W, Qiu M, Zouhdi S 2012 Opt. Lett. 37 4955Google Scholar

    [146]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [147]

    Zou Y H, Jiang L, Wena S C, Shu W X, Qing Y J, Tang Z X, Luo H L, Fan D Y 2008 Appl. Phys. Lett. 93 26115

    [148]

    Wena Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111Google Scholar

    [149]

    Yang J, Hu X H, Li X, Liu Z, Liang Z X, Jiang X Y, Zi J 2009 Phys. Rev. B 80 125103Google Scholar

    [150]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [151]

    Lu J L, Yu W W, Zhang X D, Xu H, Hao J M, Sun Y, Chen X, Meng X J, Dai N, Chu J H 2018 J. Infrared Millim Waves 37 740

    [152]

    潘晓航, 许昊, 俞伟伟, 沈宏, 郝加明, 孙艳, 沈悦, 孟祥建, 戴宁 2019 红外与毫米波学报 38 50Google Scholar

    Pan X H, Xu H, Yu W W, Shen H, Hao J M, Sun Y, Shen Y, Meng X J, Dai N 2019 J. Infrared Millim Waves 38 50Google Scholar

    [153]

    Zhou L, Wen W J, Chan C T, Sheng P 2005 Phys. Rev. Lett. 94 243905Google Scholar

    [154]

    Song Z Y, He Q, Xiao S Y, Zhou L 2012 Appl. Phys. Lett. 101 181110Google Scholar

    [155]

    Korobkin D, Urzhumov Y, Shvets G 2006 J. Opt. Soc. Am. B 23 468

    [156]

    Hooper I R, Priest T W, Sambles J R 2006 Phys. Rev. Lett. 97 053902Google Scholar

    [157]

    Malureanu R, Zalkovskij M, Song Z Y, Gritti C, Andryieuski A, He Q, Zhou L, Jepsen P U, Lavrinenko A V 2012 Opt. Express 20 22770Google Scholar

    [158]

    Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927Google Scholar

    [159]

    Thoman A, Kern A, Helm H, Walther M 2008 Phys. Rev. B 77 195405Google Scholar

    [160]

    Ding L, Wu Q Y S, Song J F, Serita K, Tonouchi M, Teng J H 2013 Adv. Opt. Mater. 1 910Google Scholar

    [161]

    Ding L, Wu Q Y S, Teng J H 2014 Laser Photon. Rev. 8 941Google Scholar

    [162]

    Zhang J, Ade P A R, Mauskopf P, Moncelsi L, Savini G, Whitehouse N 2009 Appl. Opt. 48 6635Google Scholar

    [163]

    Chen H T, Zhou J F, O’Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [164]

    Chen H T, Zhou J F, O’Hara J F, Taylor A J 2010 THz Sci. Tech. 3 66

    [165]

    Park M S, Bhattarai K, Kim D K, Kang S W, Kim J O, Zhou J F, Jang W Y, Noyola M, Urbas A, Ku Z Y, Lee S J 2014 Opt. Express 22 30161Google Scholar

    [166]

    Hedayati M K, Abdelaziz M, Etrich C, Homaeigohar S, Rockstuhlm C, Elbahri M 2016 Materials 9 636Google Scholar

    [167]

    Jeon J Y, Bhattarai K, Kim D K, Kim J O, Urbas A, Lee S J, Ku Z Y, Zhou J F 2016 Sci. Rep. 6 36190Google Scholar

    [168]

    Cordaro A, Groep J V D, Raza S, Pecora E F, Priolo F, Brongersma M L 2019 ACS Photon. 6 453Google Scholar

    [169]

    Jeon J Y, Hwang J W, Bhattarai K, Kim D K, Kim O J, Urbas A, Zhou J F,Ku Z Y, Lee S J 2019 Opt. Mat. Express 9 1290Google Scholar

    [170]

    Kabiri A, Girgis E, Capasso F 2013 Nano Lett. 13 6040Google Scholar

    [171]

    Zhang B Y, Hendrickson J, Nader N, Chen H T, Guo J P 2014 Appl. Phys. Lett. 105 241113Google Scholar

    [172]

    Huang L, Chang C C, Zeng B B, Nogan J, Luo S N, Taylor A J, Azad A K, Chen H T 2017 ACS Photon. 4 2111Google Scholar

    [173]

    Zhao J, Zhang C, Cheng Q, Yang J, Cui T J 2018 Appl. Phys. Lett. 112 073504Google Scholar

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射.  , 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [3] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [5] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用.  , 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [7] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法.  , 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [9] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [10] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制.  , 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [11] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控.  , 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [12] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身.  , 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [13] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用.  , 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [16] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应.  , 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [17] 邓俊鸿, 李贵新. 非线性光学超构表面.  , 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [18] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦.  , 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [19] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [20] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究.  , 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
计量
  • 文章访问数:  15174
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 修回日期:  2019-05-27
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map