Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band

Zheng Yue-Jun Gao Jun Cao Xiang-Yu Li Si-Jia Yang Huan-Huan Li Wen-Qiang Zhao Yi Liu Hong-Xi

Citation:

A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band

Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang, Zhao Yi, Liu Hong-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the properties of the artificial magnetic conductor (AMC), a broadband low radar cross-section (RCS) reflection screen covering X and Ku band is designed and fabricated. The reflection screen is formed by combining two AMC cells, i.e., AMC1 with a dual band Jerusalem cross structure, and AMC2 with a wideband metal square patch structure. By optimizing the structures of these AMC cells, it is achieved that the frequency corresponding to the inversion point of the AMC1 reflection phase curve is equal or close to the frequency corresponding to the null point of the AMC2 reflection phase curve. Therefore, the valid reflection phase difference band is broadened and the RCS is reduced in a wider band. In addition, presented in this paper is a theoretical formula to calculate the reflection energy peak direction. When the incident angle, chessboard unit dimension and observed frequency are fixed, the reflection energy peak direction can be calculated by the formula. The calculation results from the theoretical formula are consistent with the HFSS simulation results, so the theoretical formula is valid. The simulation results indicate that, compared with the same-dimension metal RCS, the backscattering RCS is reduced by more than 10 dB in a frequency range of 7.4-17.0 GHz, except minority frequencies close to 9.8 GHz. The 10 dB-reducing RCS bandwidth covers the entire X band and most of Ku band, and the relative bandwidth is 78.7%. The largest reduction reaches 40.3 dB at 11.6 GHz. The simulations and the measurements are in good agreement. The results validate the broadband low RCS property of the reflection screen.
    • Funds: Project support by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389) and the Natural Science Basic Research of Shaanxi Province, China (Grant No. 2012JM8003).
    [1]

    Jia Y T, Liu Y, Hao Y W, Gong S X 2014 Electron. Lett. 50 345

    [2]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propagat. 62 945

    [3]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propagat. 62 163

    [4]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2014 J. Microwave 5 54 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 杨欢欢 2014 微波学报 5 54]

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Li W Q, Gao J, Cao X Y, Yang Q, Zhao Y, Zhang Z, Zhang C H 2014 Acta Phys. Sin. 63 124101 (in Chinese) [李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉 2014 63 124101]

    [7]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Li W Q 2014 J. Air Force Engin. Univ. (Nat. Sci. Edit.) 5 57 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 李文强 2014 空军工程大学学报 (自然科学版) 5 57]

    [8]

    Euler M, Fusco V F 2010 IEEE Microw. Opt. Technol. Lett. 52 577

    [9]

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]

    [10]

    Genovesi S, Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2327

    [11]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2740

    [12]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 Chin. Phys. B 21 055201

    [13]

    Li M, Xiao S Q, Bai Y Y, Wang B Z 2012 IEEE Antennas and Wireless Propagation Letter 11 748

    [14]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propagat. 61 1479

    [15]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [16]

    Li S J, Cao X Y, Liu T, Yang H H 2014 Radio Engineering 23 222

    [17]

    Li S J, Gao J, Cao X Y, Zhang Z 2014 J. Appl. Phys. 115 213703

    [18]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propagat. 55 3630

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 IEEE Microw. Opt. Technol. Lett. 53 712

    [20]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese) [鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electron. Lett. 49 1312

    [23]

    Galarregui J C I, Pereda A T, Falcón J L M, Gonzalo I E R, Maagt P 2013 IEEE Trans. Antennas Propagat. 61 6136

    [24]

    Zhang Y 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [张泳2011博士学位论文(成都: 电子科技大学)]

    [25]

    Cos M E, álvarez Y, Las-Heras F 2011 IEEE Antennas and Wireless Propagation Letter 10 615

    [26]

    Liu S Y, Wu Q, Hua J, Chen M L 2012 Proceedings of the 5th GSMM Harbin, China, May 27-30, 2012 p70

    [27]

    Fan Z H, Chen M, Wang S N, Chen R S, Du B, Liang Z M 2009 Chinese Journal of Radio Science 24 724 (in Chinese) [樊振宏, 陈明, 汪书娜, 陈如山, 杜彪, 梁赞明 2009 电波科学学报 24 724]

  • [1]

    Jia Y T, Liu Y, Hao Y W, Gong S X 2014 Electron. Lett. 50 345

    [2]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propagat. 62 945

    [3]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propagat. 62 163

    [4]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2014 J. Microwave 5 54 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 杨欢欢 2014 微波学报 5 54]

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Li W Q, Gao J, Cao X Y, Yang Q, Zhao Y, Zhang Z, Zhang C H 2014 Acta Phys. Sin. 63 124101 (in Chinese) [李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉 2014 63 124101]

    [7]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Li W Q 2014 J. Air Force Engin. Univ. (Nat. Sci. Edit.) 5 57 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 李文强 2014 空军工程大学学报 (自然科学版) 5 57]

    [8]

    Euler M, Fusco V F 2010 IEEE Microw. Opt. Technol. Lett. 52 577

    [9]

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]

    [10]

    Genovesi S, Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2327

    [11]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2740

    [12]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 Chin. Phys. B 21 055201

    [13]

    Li M, Xiao S Q, Bai Y Y, Wang B Z 2012 IEEE Antennas and Wireless Propagation Letter 11 748

    [14]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propagat. 61 1479

    [15]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [16]

    Li S J, Cao X Y, Liu T, Yang H H 2014 Radio Engineering 23 222

    [17]

    Li S J, Gao J, Cao X Y, Zhang Z 2014 J. Appl. Phys. 115 213703

    [18]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propagat. 55 3630

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 IEEE Microw. Opt. Technol. Lett. 53 712

    [20]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese) [鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electron. Lett. 49 1312

    [23]

    Galarregui J C I, Pereda A T, Falcón J L M, Gonzalo I E R, Maagt P 2013 IEEE Trans. Antennas Propagat. 61 6136

    [24]

    Zhang Y 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [张泳2011博士学位论文(成都: 电子科技大学)]

    [25]

    Cos M E, álvarez Y, Las-Heras F 2011 IEEE Antennas and Wireless Propagation Letter 10 615

    [26]

    Liu S Y, Wu Q, Hua J, Chen M L 2012 Proceedings of the 5th GSMM Harbin, China, May 27-30, 2012 p70

    [27]

    Fan Z H, Chen M, Wang S N, Chen R S, Du B, Liang Z M 2009 Chinese Journal of Radio Science 24 724 (in Chinese) [樊振宏, 陈明, 汪书娜, 陈如山, 杜彪, 梁赞明 2009 电波科学学报 24 724]

  • [1] Feng Kui-Sheng, Li Na, Li Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] Feng Kui-Sheng, Li Na, Yang Huan-Huan. A novel low-RCS antenna array based on integration of electromagnetic metasurface and conventional antenna. Acta Physica Sinica, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [3] Ultra-thin, ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211254
    [4] Hao Biao, Yang Bin-Feng, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Li Tong. A coding metasurface antenna array with low radar cross section. Acta Physica Sinica, 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [5] Shi Tai-Xia, Dong Li-Juan, Chen Yong-Qiang, Liu Yan-Hong, Liu Li-Xiang, Shi Yun-Long. Regulation of spatial fields in wireless power transfer with artificial magnetic conductor. Acta Physica Sinica, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [6] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [7] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [8] Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen. Design of broadband reflective 90 polarization rotator based on metamaterial. Acta Physica Sinica, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [9] Dang Ke-Zheng, Shi Jia-Ming, Li Zhi-Gang, Meng Xiang-Hao, Wang Qi-Chao. Design of multiband Salisbury screen based on high impedance surfaces. Acta Physica Sinica, 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [10] Guo Fei, Du Hong-Liang, Qu Shao-Bo, Xia Song, Xu Zhuo, Zhao Jian-Feng, Zhang Hong-Mei. Design and fabrication of a broadband metamaterial absorber based on a dielectric and magnetic hybrid substrate. Acta Physica Sinica, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [11] Liang Wen-Yao, Zhang Yu-Xia, Chen Wu-He. Physical mechanism of super-broadband and all-angle self-collimation transmission in photonic crystal with low rotational symmetry. Acta Physica Sinica, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [12] Li Wen-Qiang, Gao Jun, Cao Xiang-Yu, Yang Qun, Zhao Yi, Zhang Zhao, Zhang Cheng-Hui. A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics. Acta Physica Sinica, 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [13] Zhao Yi, Cao Xiang-Yu, Zhang Di, Yao Xu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang. Design of high-gain broadband low-RCS waveguide slot antenna. Acta Physica Sinica, 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [14] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [15] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [16] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [17] Lu Lei, Qu Shao-Bo, Ma Hua, Xia Song, Xu Zhuo, Wang Jia-Fu, Yu Fei. A broadband artificial magnetic conductor composite structure for radar cross section reduction. Acta Physica Sinica, 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [18] Zhao Yi, Cao Xiang-Yu, Gao Jun, Yao Xu, Ma Jia-Jun, Li Si-Jia, Yang Huan-Huan. A wideband low RCS reflection screen based on artificial magnetic conductor orthogonal array. Acta Physica Sinica, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [19] Feng Ye, Yang Yi-Biao, Wang An-Bang, Wang Yun-Cai. Generation of 27 GHz flat broadband chaotic laser with semiconductor laser loop. Acta Physica Sinica, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [20] Wang Xiao-Hui, Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
Metrics
  • Abstract views:  6299
  • PDF Downloads:  771
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2014
  • Accepted Date:  20 July 2014
  • Published Online:  05 January 2015

/

返回文章
返回
Baidu
map