-
在地面大气电场为正极性的条件下, 成功实现12次人工引发闪电, 对其放电特征、初始阶段上行负先导的传输特征与机理进行了研究. 引发闪电时地面大气电场强度均值约5 kV/m, 最高超过13 kV/m. 除一次个例的放电发生了正、极性反转并产生多次负回击以外, 其他11次引发闪电均未产生继后回击过程, 闪电放电电流总体上在几百安培量级. 引发闪电起始后, 其向上传输的负梯级先导平均二维速度为1.85 × 105 m/s, 获得132次梯级的长度范围为0.8—8.7 m, 平均3.9 m. 先导起始阶段的电流和电磁场呈现显著的脉冲特征, 其脉冲间隔、电流峰值、转移电荷量、半峰值宽度、电流上升时间T10%—90%平均值分别为17.9 μs, 81 A, 364 μC, 3.1 μs和0.9 μs, 单次梯级的等效线电荷密度为118.5 μC/m. 先导通道的分叉一般伴随梯级过程发生, 存在两种方式: 1) 先导头部前方成簇的空间茎/空间先导在同一梯级周期内先后与先导头部发生连接, 对应的电流脉冲表现为多峰结构, 峰值点时间间隔约2—3 μs, 最长6—7 μs; 2) 曾熄灭的空间茎/空间先导重燃后侧向连接至先导通道.Twelve lightning flashes are successfully triggered under the positive atmospheric electric field condition. The discharge properties of the flashes, and the propagation characteristics and mechanism of the involving upward negative leaders are investigated. When lightning flashes are triggered, the average ground atmospheric electric field is around 5 kV/m, with a maximum value exceeding 13 kV/m. Except for one special event showing a discharge polarity reversal (from positive to negative) and producing multiple negative return strokes, none of the remaining 11 triggered lightning flashes involves the subsequent return stroke process. The discharge currents of these flashes are generally of the order of several hundred amperes. The successfully triggered lightning flashes start with the initiation and the upward propagation of negative stepped leaders, of which the average two-dimensional velocity is 1.85 × 105 m/s. For a total of 132 steps captured by the high-speed video camera, the step lengths range from 0.8 m to 8.7 m, with an average of 3.9 m. During the initial stage of the upward negative stepped leader, the current and electromagnetic field present a significant impulsive feature. The mean value of pulse interval, current peak, charge transfer, half-peak-width and current rise time T10%–90% are 17.9 μs, 81A, 364 μC, 3.1 μs, and 0.9 μs, respectively. The equivalent linear charge density of a single step is 118.5 μC/m. The branching of the leader channel generally takes place together with the stepping process in two ways: the first way is to implement the multiple connections of clustering space stems/space leaders to the leader head within an individual step cycle, and the corresponding current waveform presents a multi-peak structure, with a peak interval of about 2–3 μs (up to 6–7 μs); the second way is to reactivate those previously extinguished space stems/space leaders and to connect them to the lateral surface of the channel.
-
Keywords:
- rocket-triggered lightning /
- positive flash /
- upward negative leader /
- stepping /
- branching
[1] 苟学强, 张义军, 李亚珺, 陈明理 2018 67 205201Google Scholar
Gou X, Zhang Y, Li Y, Chen M 2018 Acta Phys. Sin. 67 205201Google Scholar
[2] 郄秀书, 袁善锋, 陈志雄, 王东方, 刘冬霞, 孙萌宇, 孙竹玲, 等 2021 中国科学: 地球科学 51 46
Qie X, Yuan S, Chen Z, Wang D, Liu D, Sun M, Sun Z, et.al 2021 Sci. Sin. Terr. 51 46
[3] Lu W, Gao Y, Chen L, Qi Q, Ma Y, Zhang Y, Chen S, Yan X, Chen C, Zhang Y 2015 J. Atmos. Sol. Terr. Phys. 136 23Google Scholar
[4] Qie X, Yuan S, Chen Z, Wang D, Liu D, Sun M, Sun Z, Srivastava A, Zhang H, Lu J 2020 Sci. China Earth Sci. 64 10
[5] Schonland B F J, Malan D, Collens H 1935 Proc. R. Soc. London, Ser. A 152 595Google Scholar
[6] Berger K 1967 J. Franklin Inst. 283 478Google Scholar
[7] Gorin B, Levitov V, Shkilev A 1976 4th International Conference on Gas Discharges, Swansea, UK, September 7–10, 1976 p274
[8] Biagi C J, Uman M A, Hill J D, Jordan D M 2011 Geophys. Res. Lett. 38 L24809
[9] Hill J D, Uman M A, Jordan D M 2011 J. Geophys. Res. Atmos. 116 D16117Google Scholar
[10] Qi Q, Lu W, Ma Y, Chen L, Zhang Y, Rakov V A 2016 Atmos. Res. 178 260
[11] Jiang R, Qie X, Zhang H, Liu M, Sun Z, Lu G, Wang Z, Wang Y 2017 Sci. Rep. 7 3457Google Scholar
[12] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 62 109201Google Scholar
Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar
[13] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 60 079201Google Scholar
Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M T, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201Google Scholar
[14] 唐国瑛, 孙竹玲, 蒋如斌, 李丰全, 刘明远, 刘昆, 郄秀书 2020 69 189201Google Scholar
Tang G Y, Sun Z L, Jiang R B, Li F Q, Liu M Y, Liu K, Qie X S 2020 Acta Phys. Sin. 69 189201Google Scholar
[15] 王彩霞, 郄秀书, 蒋如斌, 杨静 2012 61 553
Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 553
[16] Warner T A, Helsdon Jr J H, Bunkers M J, Saba M M, Orville R E 2013 B. Am. Meteorol. Soc. 94 631Google Scholar
[17] Berger K, Anderson R B, Kroninger H 1975 Electra 41 23
[18] Heidler F H, Manhardt M, Stimper K 2014 IEEE Trans. Electromagn.Compat. 57 102Google Scholar
[19] Liu X, Wang C, Zhang Y, Xiao Q, Wang D, Zhou Z, Guo C 1994 J. Geophys. Res. Atmos. 99 10727Google Scholar
[20] Azadifar M, Rachidi F, Rubinstein M, Paolone M, Rakov V A, Pavanello D, Metz S, Romero C 2015 International Symposium on Lightning Protection (XIII SIPDA) Balneario Camboriu, Brazil, Sept.28–Oct. 2, 2015 p32
[21] Zhou H, Diendorfer G, Thottappillil R, Pichler H, Mair M 2012 J. Geophys. Res. Atmos. 117 D06110Google Scholar
[22] Miki M, Miki T, Asakawa A, Shindo T 2014 XV International Conference on Atmospheric Electricity Norman, Oklahoma, U.S.A, June 15–20, 2014
[23] Pu Y, Jiang R, Qie X, Liu M, Zhang H, Fan Y, Xueke W 2017 Geophys.Res. Lett. 44 7029Google Scholar
[24] Ma Z, Jiang R, Qie X, Xing H, Liu M, Sun Z, Qin Z, Zhang H, Li X 2021 Atmos. Res. 249 105314Google Scholar
[25] Sun Z, Qie X, Jiang R, Liu M, Wu X, Wang Z, Lu G, Zhang H 2014 J. Geophys. Res. Atmos. 119 13Google Scholar
[26] Sun Z, Qie X, Liu M, Cao D, Wang D 2013 Atmos.Res. 129 58Google Scholar
[27] Qie X, Jiang R, Wang C, Yang J, Wang J, Liu D 2011 J. Geophys.Research: Atmos. 116 D10102Google Scholar
[28] Jiang R, Qie X, Wang C, Yang J 2013 Atmos. Res. 129 90
[29] Liu M, Jiang R, Li Z, Qie X, Zheng T, Tan Y, Li X, Zhang H, Liu M, Sun Z, Wang Y, Ma Z, Lu J, Feng R, Liu Y 2020 Atmos. Res. 244 105049Google Scholar
[30] Williams E R 2006 Plasma Sources Sci. Technol. 15 S91Google Scholar
[31] Bazelyan E, Raizer Y 2000 Lightning Physics and Lightning Protection (Florida: CRC Press) p325
[32] van der Velde O A, Montanyà J 2013 J. Geophys. Res. Atmos. 118 13Google Scholar
[33] Campos L Z, Saba M M, Warner T A, Pinto Jr O, Krider E P, Orville R E 2014 Atmos. Res. 135 285
[34] Shao X, Krehbiel P 1996 J. Geophys. Res. Atmos. 101 26641Google Scholar
[35] Wu T, Yoshida S, Akiyama Y, Stock M, Ushio T, Kawasaki Z 2015 J. Geophys. Res. Atmos. 120 9071Google Scholar
[36] Jiang R, Qie X, Li Z, Zhang H, Li X, Yuan S, Liu M, Sun Z, Srivastava A, Liu M 2020 Geophys. Res. Lett. 47 e2020GL088107
[37] Wu T, Wang D, Takagi N 2019 J. Geophys. Res. Atmos. 124 9983Google Scholar
[38] Orville R E, Helsdon Jr J H, Evans W H 1974 J. Geophys. Res. 79 4059Google Scholar
[39] Uman M A 1964 J. Geophys. Res. 69 583Google Scholar
[40] Qi Q, Lyu W, Ma Y, Wu B, Chen L, Jiang R, Zhu Y, Rakov V A 2019 Geophys. Res. Lett. 46 12580Google Scholar
[41] Chen M, Takagi N, Watanabe T, Wang D, Liu X 1999 J. Geophys. Res. 1042 27573
[42] Lu G, Zhang H, Jiang R, Fan Y, Qie X, Liu M, Sun Z, Wang Z, Tian Y, Liu K 2016 Radio Sci. 51 1432Google Scholar
[43] 樊艳峰, 陆高鹏, 张鸿波, 蒋如斌, 刘明远, 郄秀书 2017 高电压技术 43 987Google Scholar
Fan Y, Lu G, Zhang H, Jiang R, Liu M, Qie X 2017 High Voltage Eng. 43 987Google Scholar
[44] Fan Y, Lu G, Jiang R, Zhang H, Li X, Liu M, Qie X, Zheng D, Lyu W, Zhang Y, Zhang Y 2018 J. Geophys. Res. Atmos. 123 11
[45] Petersen D, Bailey M, Beasley W H, Hallett J 2008 J. Geophys. Res. Atmos. 113 D17205Google Scholar
[46] Huang H, Wang D, Wu T, Takagi N 2018 J. Geophys. Res. Atmos. 123 12597
[47] Ding Z, Rakov V, Zhu Y, Tran M 2020 J. Geophys. Res. Atmos. 125 e2020JD033305
[48] Stolzenburg M, Marshall T C, Karunarathne S, Karunarathna N, Orville R E 2015 J. Geophys. Res. Atmos. 120 3408Google Scholar
-
图 3 (a) V711高速相机拍摄的闪电1901其中一帧图像; (b) 2019年6次上行负先导发展二维局部速度随高度的演变, 其中, 各闪电的第一个数据点所对应高度表示先导从引雷导线顶端起始时的高度. 注: 图中黑色点出现高度重叠特征, 是因为闪电1908的上行先导在510—540 m高度范围内转为横向水平发展, 并出现通道头部调转向下发展的情况
Fig. 3. (a) A still image of the triggered lightning 1901, as captured by the V711 high-speed camera; (b) evolution of the two-dimensional partial speeds of 6 upward negative leaders. The first points of the curves in the figure indicate the initiating heights of the associated upward negative leaders. Note that the overlapping characteristics of the black curve at the 500–540 m height are due to the leader’s horizontal and even downward propagation there.
图 4 引发正极性闪电的上行负先导连续6帧光学图像, 时间分辨率为11.1 μs. 注: 上图为原始图像, 下图为反色显示
Fig. 4. Six consecutive optical images of the upward negative leader in rocket-triggered positive lightning flash, with a temporal resolution of 11.1 μs. Note that the top panel gives the original images, and the bottom panel gives the reverse color version of the images.
图 7 (a) 闪电1907上行负先导初始阶段的电流、电场变化、磁场变化和通道光强演变; (b) 高速相机拍摄的通道发展图像(逐帧时间间隔为11.11 μs). 注: 图(a)和图(b)中1—27代表相机帧数
Fig. 7. (a) The synchronous channel base current, electric field change, magnetic field change and channel luminosity, for the upward negative leader in the triggered lightning flash 1907; (b) the channel evolution of the leader, as captured by the high speed video camera with temporal resolution of 11.11 μs. Note: 1–27 in Figure (a) and Figure (b) represent the number of camera frames.
图 8 (a) 闪电1908上行负先导初始阶段的电流、电场变化、磁场变化和通道光强演变; (b) 高速相机拍摄的通道发展图像(逐帧时间间隔为11.11 μs). 注: 图(a)和图(b)中1—27代表相机帧数
Fig. 8. (a) The synchronous channel base current, electric field change, magnetic field change and channel luminosity, for the upward negative leader in the triggered lightning flash 1908; (b) the channel evolution of the leader, as captured by the high speed video camera with temporal resolution of 11.11 μs. Note: 1–27 in Figure (a) and Figure (b) represent the number of camera frames.
表 1 正极性人工引发闪电放电及先导发展的基本特征
Table 1. The general characteristics of the positive triggered lightning discharge and the associated leader propagation.
日期 编号 引雷时的地面
大气电场强度
/(kV·m–1)平台/
触发
方式*上行负先导
始发高度
/m先导主通道
二维平均速度
/(105 m·s–1)闪电持
续时间
/ms闪电转移
电荷总量
/C闪电电
流峰值
/A平均电
流强度
/A2015/07/24 1501 4.31 1/传统 356 2.10 86 16.1 443 169 2015/07/30 1503 3.83 1/传统 453 — 76 19.7 983 258 2019/07/06 1901 4.42 1/传统 257 2.44 622 — — — 1902 4.81 1/传统 425 1.62 288 — — — 1903 4.96 1/传统 473 1.45 355 — — — 1904 10.37 2/空中 — — — — — — 1905 13.18 2/空中 668 — 148 — — — 2019/07/14 1906 7.46 1/传统 — — — — — — 2019/07/29 1907 5.64 1/传统 339 2.01 208 121.4 1613 569 1908 5.37 1/传统 399 1.50 166 84.9 1187 503 1909 5.12 1/传统 555 2.10 210 68.4 883 320 2019/08/07 1910 5.38 1/空中 > 536 — — — — — *注: 表中平台指火箭发射平台, 1代表地面传统平台, 2代表信号塔平台; 传统触发指引雷导线良好接地的方式, 引雷时导线顶端始发单向的上行先导; 空中触发指引雷导线不接地的方式, 导线底部距地面几十米, 引雷时始发双向先导, 上端向雷暴云发展, 下端向地面发展. 表 2 闪电1907和1908上行负先导初始阶段梯级过程的脉冲电流和通道发展特征参量
Table 2. The parameters of impulsive current waveform and the channel evolution during initial stepwise development of the upward negative leaders in triggered lightning flashes 1907 and 1908.
闪电号 1907 1908 脉冲序列号 P1 P2 P3 P4 P5 P6 P1 P2 P3 P14 P5 P6 P7 P8 P9 P10 P11 脉冲间隔/μs — — 18.9 18.1 24.4 20.2 — 17.7 17.7 17.4 11.4 10.3 22.7 21.6 17.5 15.3 17.6 峰值电流/A 93 113 130 106 96 106 110 93 90 66 53 50 43 46 60 63 63 脉冲电荷量/μC 324 396 441 681 470 553 373 359 327 233 240 249 327 241 316 307 352 半峰值宽度/μs 2.5 2.2 1.9 6.3 4.6 4.9 1.5 2.2 2.2 2.3 4.6 3.2 0.4 3.3 3.8 3.6 4.1 T10%—90%/μs 0.9 0.6 0.9 0.9 2.4 2.4 0.1 0.6 0.4 0.6 1.8 1.1 1.0 1.2 0.5 0.9 0.6 梯级长度/m 2.4 3.4 2.3 3.9 4.5 2.8 2.3 5.5 2.3 4.6 2.3 2.2 2.8 4.5 2.4 4.4 3.2 梯级的等效线电荷密度/(μC·m–1) 131.5 113.7 188.5 174.7 103.3 196.8 159.5 65 139.9 49.9 102.9 112.8 116.7 53 128 69.8 109.5 -
[1] 苟学强, 张义军, 李亚珺, 陈明理 2018 67 205201Google Scholar
Gou X, Zhang Y, Li Y, Chen M 2018 Acta Phys. Sin. 67 205201Google Scholar
[2] 郄秀书, 袁善锋, 陈志雄, 王东方, 刘冬霞, 孙萌宇, 孙竹玲, 等 2021 中国科学: 地球科学 51 46
Qie X, Yuan S, Chen Z, Wang D, Liu D, Sun M, Sun Z, et.al 2021 Sci. Sin. Terr. 51 46
[3] Lu W, Gao Y, Chen L, Qi Q, Ma Y, Zhang Y, Chen S, Yan X, Chen C, Zhang Y 2015 J. Atmos. Sol. Terr. Phys. 136 23Google Scholar
[4] Qie X, Yuan S, Chen Z, Wang D, Liu D, Sun M, Sun Z, Srivastava A, Zhang H, Lu J 2020 Sci. China Earth Sci. 64 10
[5] Schonland B F J, Malan D, Collens H 1935 Proc. R. Soc. London, Ser. A 152 595Google Scholar
[6] Berger K 1967 J. Franklin Inst. 283 478Google Scholar
[7] Gorin B, Levitov V, Shkilev A 1976 4th International Conference on Gas Discharges, Swansea, UK, September 7–10, 1976 p274
[8] Biagi C J, Uman M A, Hill J D, Jordan D M 2011 Geophys. Res. Lett. 38 L24809
[9] Hill J D, Uman M A, Jordan D M 2011 J. Geophys. Res. Atmos. 116 D16117Google Scholar
[10] Qi Q, Lu W, Ma Y, Chen L, Zhang Y, Rakov V A 2016 Atmos. Res. 178 260
[11] Jiang R, Qie X, Zhang H, Liu M, Sun Z, Lu G, Wang Z, Wang Y 2017 Sci. Rep. 7 3457Google Scholar
[12] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 62 109201Google Scholar
Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar
[13] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 60 079201Google Scholar
Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M T, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201Google Scholar
[14] 唐国瑛, 孙竹玲, 蒋如斌, 李丰全, 刘明远, 刘昆, 郄秀书 2020 69 189201Google Scholar
Tang G Y, Sun Z L, Jiang R B, Li F Q, Liu M Y, Liu K, Qie X S 2020 Acta Phys. Sin. 69 189201Google Scholar
[15] 王彩霞, 郄秀书, 蒋如斌, 杨静 2012 61 553
Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 553
[16] Warner T A, Helsdon Jr J H, Bunkers M J, Saba M M, Orville R E 2013 B. Am. Meteorol. Soc. 94 631Google Scholar
[17] Berger K, Anderson R B, Kroninger H 1975 Electra 41 23
[18] Heidler F H, Manhardt M, Stimper K 2014 IEEE Trans. Electromagn.Compat. 57 102Google Scholar
[19] Liu X, Wang C, Zhang Y, Xiao Q, Wang D, Zhou Z, Guo C 1994 J. Geophys. Res. Atmos. 99 10727Google Scholar
[20] Azadifar M, Rachidi F, Rubinstein M, Paolone M, Rakov V A, Pavanello D, Metz S, Romero C 2015 International Symposium on Lightning Protection (XIII SIPDA) Balneario Camboriu, Brazil, Sept.28–Oct. 2, 2015 p32
[21] Zhou H, Diendorfer G, Thottappillil R, Pichler H, Mair M 2012 J. Geophys. Res. Atmos. 117 D06110Google Scholar
[22] Miki M, Miki T, Asakawa A, Shindo T 2014 XV International Conference on Atmospheric Electricity Norman, Oklahoma, U.S.A, June 15–20, 2014
[23] Pu Y, Jiang R, Qie X, Liu M, Zhang H, Fan Y, Xueke W 2017 Geophys.Res. Lett. 44 7029Google Scholar
[24] Ma Z, Jiang R, Qie X, Xing H, Liu M, Sun Z, Qin Z, Zhang H, Li X 2021 Atmos. Res. 249 105314Google Scholar
[25] Sun Z, Qie X, Jiang R, Liu M, Wu X, Wang Z, Lu G, Zhang H 2014 J. Geophys. Res. Atmos. 119 13Google Scholar
[26] Sun Z, Qie X, Liu M, Cao D, Wang D 2013 Atmos.Res. 129 58Google Scholar
[27] Qie X, Jiang R, Wang C, Yang J, Wang J, Liu D 2011 J. Geophys.Research: Atmos. 116 D10102Google Scholar
[28] Jiang R, Qie X, Wang C, Yang J 2013 Atmos. Res. 129 90
[29] Liu M, Jiang R, Li Z, Qie X, Zheng T, Tan Y, Li X, Zhang H, Liu M, Sun Z, Wang Y, Ma Z, Lu J, Feng R, Liu Y 2020 Atmos. Res. 244 105049Google Scholar
[30] Williams E R 2006 Plasma Sources Sci. Technol. 15 S91Google Scholar
[31] Bazelyan E, Raizer Y 2000 Lightning Physics and Lightning Protection (Florida: CRC Press) p325
[32] van der Velde O A, Montanyà J 2013 J. Geophys. Res. Atmos. 118 13Google Scholar
[33] Campos L Z, Saba M M, Warner T A, Pinto Jr O, Krider E P, Orville R E 2014 Atmos. Res. 135 285
[34] Shao X, Krehbiel P 1996 J. Geophys. Res. Atmos. 101 26641Google Scholar
[35] Wu T, Yoshida S, Akiyama Y, Stock M, Ushio T, Kawasaki Z 2015 J. Geophys. Res. Atmos. 120 9071Google Scholar
[36] Jiang R, Qie X, Li Z, Zhang H, Li X, Yuan S, Liu M, Sun Z, Srivastava A, Liu M 2020 Geophys. Res. Lett. 47 e2020GL088107
[37] Wu T, Wang D, Takagi N 2019 J. Geophys. Res. Atmos. 124 9983Google Scholar
[38] Orville R E, Helsdon Jr J H, Evans W H 1974 J. Geophys. Res. 79 4059Google Scholar
[39] Uman M A 1964 J. Geophys. Res. 69 583Google Scholar
[40] Qi Q, Lyu W, Ma Y, Wu B, Chen L, Jiang R, Zhu Y, Rakov V A 2019 Geophys. Res. Lett. 46 12580Google Scholar
[41] Chen M, Takagi N, Watanabe T, Wang D, Liu X 1999 J. Geophys. Res. 1042 27573
[42] Lu G, Zhang H, Jiang R, Fan Y, Qie X, Liu M, Sun Z, Wang Z, Tian Y, Liu K 2016 Radio Sci. 51 1432Google Scholar
[43] 樊艳峰, 陆高鹏, 张鸿波, 蒋如斌, 刘明远, 郄秀书 2017 高电压技术 43 987Google Scholar
Fan Y, Lu G, Zhang H, Jiang R, Liu M, Qie X 2017 High Voltage Eng. 43 987Google Scholar
[44] Fan Y, Lu G, Jiang R, Zhang H, Li X, Liu M, Qie X, Zheng D, Lyu W, Zhang Y, Zhang Y 2018 J. Geophys. Res. Atmos. 123 11
[45] Petersen D, Bailey M, Beasley W H, Hallett J 2008 J. Geophys. Res. Atmos. 113 D17205Google Scholar
[46] Huang H, Wang D, Wu T, Takagi N 2018 J. Geophys. Res. Atmos. 123 12597
[47] Ding Z, Rakov V, Zhu Y, Tran M 2020 J. Geophys. Res. Atmos. 125 e2020JD033305
[48] Stolzenburg M, Marshall T C, Karunarathne S, Karunarathna N, Orville R E 2015 J. Geophys. Res. Atmos. 120 3408Google Scholar
计量
- 文章访问数: 4659
- PDF下载量: 73
- 被引次数: 0