搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏

郑月军 高军 曹祥玉 李思佳 杨欢欢 李文强 赵一 刘红喜

引用本文:
Citation:

覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏

郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜

A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band

Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang, Zhao Yi, Liu Hong-Xi
PDF
导出引用
  • 设计并制备了一种基于人工磁导体(artificial magnetic conductor, AMC)的覆盖X和Ku波段的宽带低雷达散射截面(radar cross section, RCS)反射屏. 将双频带耶路撒冷十字形AMC结构和宽带双金属方形AMC结构复合, 通过参数优化, 使耶路撒冷十字形结构的反射相位反转频点与方形结构的反射相位零值频点重合或者非常接近, 进一步扩宽有效相位差区域, 从而拓展RCS减缩带宽. 给出了反射能量峰值方位的一般理论计算公式, 当入射角度、棋盘单元尺寸和观察频率确定后, 可通过公式计算出反射峰的方位. HFSS软件仿真结果与理论计算结果符合较好, 验证了理论公式的正确性. 同时与等尺寸金属平板相比, 在7.4–17.0 GHz 频带内, 除9.8 GHz附近的少数频点外, 天线后向RCS均有-10 dB以上的减缩, 基本覆盖X波段和Ku波段, 相对带宽为78.7%, 在11.6 GHz时, 减缩量最大, 达到40.3 dB. 加工了反射屏实物并进行测试, 测试结果与仿真结果基本一致, 证实了反射屏具有宽带的低RCS特性.
    Based on the properties of the artificial magnetic conductor (AMC), a broadband low radar cross-section (RCS) reflection screen covering X and Ku band is designed and fabricated. The reflection screen is formed by combining two AMC cells, i.e., AMC1 with a dual band Jerusalem cross structure, and AMC2 with a wideband metal square patch structure. By optimizing the structures of these AMC cells, it is achieved that the frequency corresponding to the inversion point of the AMC1 reflection phase curve is equal or close to the frequency corresponding to the null point of the AMC2 reflection phase curve. Therefore, the valid reflection phase difference band is broadened and the RCS is reduced in a wider band. In addition, presented in this paper is a theoretical formula to calculate the reflection energy peak direction. When the incident angle, chessboard unit dimension and observed frequency are fixed, the reflection energy peak direction can be calculated by the formula. The calculation results from the theoretical formula are consistent with the HFSS simulation results, so the theoretical formula is valid. The simulation results indicate that, compared with the same-dimension metal RCS, the backscattering RCS is reduced by more than 10 dB in a frequency range of 7.4-17.0 GHz, except minority frequencies close to 9.8 GHz. The 10 dB-reducing RCS bandwidth covers the entire X band and most of Ku band, and the relative bandwidth is 78.7%. The largest reduction reaches 40.3 dB at 11.6 GHz. The simulations and the measurements are in good agreement. The results validate the broadband low RCS property of the reflection screen.
    • 基金项目: 国家自然科学基金(批准号: 61271100, 61471389)和陕西省自然科学基础研究计划项目(批准号:2012JM8003)资助的课题.
    • Funds: Project support by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389) and the Natural Science Basic Research of Shaanxi Province, China (Grant No. 2012JM8003).
    [1]

    Jia Y T, Liu Y, Hao Y W, Gong S X 2014 Electron. Lett. 50 345

    [2]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propagat. 62 945

    [3]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propagat. 62 163

    [4]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2014 J. Microwave 5 54 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 杨欢欢 2014 微波学报 5 54]

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Li W Q, Gao J, Cao X Y, Yang Q, Zhao Y, Zhang Z, Zhang C H 2014 Acta Phys. Sin. 63 124101 (in Chinese) [李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉 2014 63 124101]

    [7]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Li W Q 2014 J. Air Force Engin. Univ. (Nat. Sci. Edit.) 5 57 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 李文强 2014 空军工程大学学报 (自然科学版) 5 57]

    [8]

    Euler M, Fusco V F 2010 IEEE Microw. Opt. Technol. Lett. 52 577

    [9]

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]

    [10]

    Genovesi S, Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2327

    [11]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2740

    [12]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 Chin. Phys. B 21 055201

    [13]

    Li M, Xiao S Q, Bai Y Y, Wang B Z 2012 IEEE Antennas and Wireless Propagation Letter 11 748

    [14]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propagat. 61 1479

    [15]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [16]

    Li S J, Cao X Y, Liu T, Yang H H 2014 Radio Engineering 23 222

    [17]

    Li S J, Gao J, Cao X Y, Zhang Z 2014 J. Appl. Phys. 115 213703

    [18]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propagat. 55 3630

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 IEEE Microw. Opt. Technol. Lett. 53 712

    [20]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese) [鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electron. Lett. 49 1312

    [23]

    Galarregui J C I, Pereda A T, Falcón J L M, Gonzalo I E R, Maagt P 2013 IEEE Trans. Antennas Propagat. 61 6136

    [24]

    Zhang Y 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [张泳2011博士学位论文(成都: 电子科技大学)]

    [25]

    Cos M E, álvarez Y, Las-Heras F 2011 IEEE Antennas and Wireless Propagation Letter 10 615

    [26]

    Liu S Y, Wu Q, Hua J, Chen M L 2012 Proceedings of the 5th GSMM Harbin, China, May 27-30, 2012 p70

    [27]

    Fan Z H, Chen M, Wang S N, Chen R S, Du B, Liang Z M 2009 Chinese Journal of Radio Science 24 724 (in Chinese) [樊振宏, 陈明, 汪书娜, 陈如山, 杜彪, 梁赞明 2009 电波科学学报 24 724]

  • [1]

    Jia Y T, Liu Y, Hao Y W, Gong S X 2014 Electron. Lett. 50 345

    [2]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propagat. 62 945

    [3]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propagat. 62 163

    [4]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2014 J. Microwave 5 54 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 杨欢欢 2014 微波学报 5 54]

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Li W Q, Gao J, Cao X Y, Yang Q, Zhao Y, Zhang Z, Zhang C H 2014 Acta Phys. Sin. 63 124101 (in Chinese) [李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉 2014 63 124101]

    [7]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Li W Q 2014 J. Air Force Engin. Univ. (Nat. Sci. Edit.) 5 57 (in Chinese) [郑月军, 高军, 曹祥玉, 袁子东, 李文强 2014 空军工程大学学报 (自然科学版) 5 57]

    [8]

    Euler M, Fusco V F 2010 IEEE Microw. Opt. Technol. Lett. 52 577

    [9]

    Jiang W, Gong S X, Hong T, Wang X 2010 Acta Electron. Sin. 38 2162 (in Chinese) [姜文, 龚书喜, 洪涛, 王兴 2010 电子学报 38 2162]

    [10]

    Genovesi S, Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2327

    [11]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propagat. 60 2740

    [12]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 Chin. Phys. B 21 055201

    [13]

    Li M, Xiao S Q, Bai Y Y, Wang B Z 2012 IEEE Antennas and Wireless Propagation Letter 11 748

    [14]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propagat. 61 1479

    [15]

    Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201

    [16]

    Li S J, Cao X Y, Liu T, Yang H H 2014 Radio Engineering 23 222

    [17]

    Li S J, Gao J, Cao X Y, Zhang Z 2014 J. Appl. Phys. 115 213703

    [18]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P 2007 IEEE Trans. Antennas Propagat. 55 3630

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 IEEE Microw. Opt. Technol. Lett. 53 712

    [20]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese) [鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electron. Lett. 49 1312

    [23]

    Galarregui J C I, Pereda A T, Falcón J L M, Gonzalo I E R, Maagt P 2013 IEEE Trans. Antennas Propagat. 61 6136

    [24]

    Zhang Y 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [张泳2011博士学位论文(成都: 电子科技大学)]

    [25]

    Cos M E, álvarez Y, Las-Heras F 2011 IEEE Antennas and Wireless Propagation Letter 10 615

    [26]

    Liu S Y, Wu Q, Hua J, Chen M L 2012 Proceedings of the 5th GSMM Harbin, China, May 27-30, 2012 p70

    [27]

    Fan Z H, Chen M, Wang S N, Chen R S, Du B, Liang Z M 2009 Chinese Journal of Radio Science 24 724 (in Chinese) [樊振宏, 陈明, 汪书娜, 陈如山, 杜彪, 梁赞明 2009 电波科学学报 24 724]

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列.  , 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2021, (): . doi: 10.7498/aps.70.20211254
    [4] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计.  , 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [5] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控.  , 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [6] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏.  , 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [7] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [8] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计.  , 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [9] 党可征, 时家明, 李志刚, 孟祥豪, 王启超. 基于高阻抗表面的多频带Salisbury屏设计.  , 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [10] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备.  , 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [11] 梁文耀, 张玉霞, 陈武喝. 低对称性光子晶体超宽带全角自准直传输的机理研究.  , 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [12] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料.  , 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [13] 赵一, 曹祥玉, 张迪, 姚旭, 李思佳, 杨欢欢, 李文强. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计.  , 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [14] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线.  , 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [16] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究.  , 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [17] 鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐. 宽带雷达散射截面减缩人工磁导体复合结构.  , 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [18] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏.  , 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [19] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光.  , 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [20] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究.  , 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
计量
  • 文章访问数:  6298
  • PDF下载量:  771
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-29
  • 修回日期:  2014-07-20
  • 刊出日期:  2015-01-05

/

返回文章
返回
Baidu
map