Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on ohmic contact between graphene and metal electrode

Pu Xiao-Qing Wu Jing Guo Qiang Cai Jian-Zhen

Citation:

Theoretical study on ohmic contact between graphene and metal electrode

Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene has excellent electrical, optical, thermal and mechanical properties, so it has been used in high-performance field effect transistors, sensors, optoelectronic devices, and quantized devices. It is crucial to realize a high-quality junction between metal electrode and graphene. For example, in the field of electrical measurement, due only to the contact resistance in a proper order of magnitude, the quantum Hall effect can be realized. The lower the contact resistance, the higher the measurement accuracy of Hall resistance is. In order to reveal the factors affecting the contact resistance we propose an effective method to reduce it, and a physical model is established in this paper. The carrier transport between the metal electrode and graphene is divided into two cascaded processes. Carriers first transport from the metal electrode to the graphene underneath it, then transport between the graphene underneath metal and the adjacent graphene. The transport probability of first step is considered through the effective coupling length and the mean free path. The transport probability of second step is considered through the effective length of potential step change between the graphene under the metal and the adjacent graphene. The contact resistance is analyzed by combining the distribution of carriers. In order to verify the correctness of the theoretical results, an experimental sample with gold as the metal electrode is fabricated. The transport line model is used to measure the contact resistance. The length of contact area is 4 μm. The lengths of graphene channel are set to be 2, 4, 6, 8, and 10 μm, respectively. The current values are set to be 10, 20, 40, 60, and 80 μA, respectively. The results show that the relationship between current and voltage is almost linear. The total resistance can be obtained with different lengths of graphene. According to the transmission line model, the resistance value can be estimated as (160±30) Ω when the graphene length is zero. Considering that the measured result is obtained under two metal electrodes contacting the graphene, the contact resistance of experimental result is (320±30) Ω·μm which agrees well with the theoretical result. From the analysis of theoretical process, the factors that affect the contact resistance is determined by material, drain-source voltage, gate voltage, doping concentration, distance between metal electrode and graphene atoms, distance between graphene and gate. Finally, in order to reduce the contact resistance between graphene and metal electrode, we propose some corresponding solutions for choosing the metal material whose work function is close to graphene's, reducing the thickness of the silicon dioxide layer, increasing carrier mean free path, improving the surface morphology of the metal material, and reducing the coupling length between metal and graphene.
      Corresponding author: Wu Jing, wujing06@buaa.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. JSJL2016601C001).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firrsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [3]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [4]

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102 (in Chinese)[武佩, 胡潇, 张健, 孙连峰 2017 66 218102]

    [5]

    Avouris P, Xia F 2012 MRS Bull. 37 1225

    [6]

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501 (in Chinese)[黄乐, 张志勇, 彭练矛 2017 66 218501]

    [7]

    Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S, Fal'ko V I 2013 Rep. Prog. Phys. 76 104501

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'ko V, Kubatkin S 2010 Nature Nanotech. 5 186

    [10]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [11]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [12]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, Brink G V D, Kelly P J 2009 Phys. Rev. B 79 195425

    [15]

    Matsuda Y, Deng W Q, Goddard W A 2007 J. Phys. Chem. C 111 11113

    [16]

    Matsuda Y, Deng W Q, Goddard W A 2010 J. Phys. Chem. C 114 17845

    [17]

    Chaves F A, Jimenez D, Cummings A W, Stephan R 2014 J. Appl. Phys. 115 164513

    [18]

    Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P 2011 Nature Nanotech. 6 179

    [19]

    Datta S 1995 Electronics in Mesoscopic Systems (Cambridge: Cambridge University Press) pp57-65

    [20]

    Matthiessen A 1858 Philos. Trans. R. Soc. London 148 383

    [21]

    Cayssol J, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. B 79 075428

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firrsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [3]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [4]

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102 (in Chinese)[武佩, 胡潇, 张健, 孙连峰 2017 66 218102]

    [5]

    Avouris P, Xia F 2012 MRS Bull. 37 1225

    [6]

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501 (in Chinese)[黄乐, 张志勇, 彭练矛 2017 66 218501]

    [7]

    Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S, Fal'ko V I 2013 Rep. Prog. Phys. 76 104501

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'ko V, Kubatkin S 2010 Nature Nanotech. 5 186

    [10]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [11]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [12]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, Brink G V D, Kelly P J 2009 Phys. Rev. B 79 195425

    [15]

    Matsuda Y, Deng W Q, Goddard W A 2007 J. Phys. Chem. C 111 11113

    [16]

    Matsuda Y, Deng W Q, Goddard W A 2010 J. Phys. Chem. C 114 17845

    [17]

    Chaves F A, Jimenez D, Cummings A W, Stephan R 2014 J. Appl. Phys. 115 164513

    [18]

    Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P 2011 Nature Nanotech. 6 179

    [19]

    Datta S 1995 Electronics in Mesoscopic Systems (Cambridge: Cambridge University Press) pp57-65

    [20]

    Matthiessen A 1858 Philos. Trans. R. Soc. London 148 383

    [21]

    Cayssol J, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. B 79 075428

  • [1] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [2] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian. Friction properties of suspended graphene. Acta Physica Sinica, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [5] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [6] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [7] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [8] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [9] Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu. Fabrication of zigzag-edged graphene antidot lattice and its transport properties. Acta Physica Sinica, 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [10] Wang Zi-Bo, Jiang Hua, Xie Xin-Cheng. Nonlocal resistance in multi-terminal graphene system. Acta Physica Sinica, 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [11] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [12] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [15] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping. Thermal transport of graphene nanoribbons embedding linear defects. Acta Physica Sinica, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [17] Wu Zheng, Wang Chen, Yan Guang-Ming, Liu Guan-Zhou, Li Cheng, Huang Wei, Lai Hong-Kai, Chen Song-Yan. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact. Acta Physica Sinica, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [18] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [19] Guo Kai-Min, Gao Xun, Xue Nian-Liang, Zhao Zhen-Ming, Li Hai-Jun, Lu Yi, Lin Jing-Quan. Spatially-resolved measurement of conductivity of plasma single filament generated by femtosecond laser. Acta Physica Sinica, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [20] Medvedeva I, Chen Shun-Sheng, Huang Chang, Wang Rui-Long, Yang Chang-Ping. The electrical transport properties of Ag/Nd0.7Sr0.3MnO3 ceramic interface. Acta Physica Sinica, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
Metrics
  • Abstract views:  9521
  • PDF Downloads:  354
  • Cited By: 0
Publishing process
  • Received Date:  03 August 2018
  • Accepted Date:  27 August 2018
  • Published Online:  05 November 2018

/

返回文章
返回
Baidu
map