搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入线型缺陷的石墨纳米带的热输运性质

姚海峰 谢月娥 欧阳滔 陈元平

引用本文:
Citation:

嵌入线型缺陷的石墨纳米带的热输运性质

姚海峰, 谢月娥, 欧阳滔, 陈元平

Thermal transport of graphene nanoribbons embedding linear defects

Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping
PDF
导出引用
  • 采用非平衡格林函数方法研究了嵌入有限长、半无限长、 无限长线型缺陷的锯齿型石墨纳米带 (ZGNR)的热输运性质.结果表明, 缺陷类型和缺陷长度对ZGNR的热导有重要影响. 当嵌入的线型缺陷长度相同时, 包含t5t7线型缺陷的石墨纳米带比包含Stone-Wales线型缺陷的条带热导低. 对于嵌入有限长、同种缺陷的ZGNR, 其热导随线型缺陷的长度增加而降低, 但是当线型缺陷很长时, 其热导对缺陷长度的变化不再敏感.通过比较嵌入有限长、半无限长、无限长线型缺陷的ZGNR, 我们发现嵌入无限长缺陷的条带比嵌入半无限长缺陷的条带热导高, 而后者比嵌入有限长线型缺陷的条带热导高. 这主要是因为在这几种结构中声子传输方向的散射界面数不同所导致的. 散射界面越多, 对应的热导就越低. 通过分析透射曲线和声子局域态密度图, 解释了这些热输运现象. 这些研究结果表明线型缺陷能够有效地调控石墨纳米带的热输运性质.
    Using nonequilibrium Green's function method, the thermal transport properties of zigzag graphene nanoribbons (ZGNR) embedding a finite (semi-infinite or infinite) long linear defect are investigated in this paper. The results show that defect type and defect length have significant influence on the thermal conductance of ZGNR. When the embedded linear defects have the same lengths, thermal conductance of ZGNR embedding t5t7 defect is lower than that of ZGNR embedding Stone-Wales defect. As for the ZGNR embedding finite and the same type defects, their thermal conductance reduce with the increase of the defect length. However, as the linear defect is long enough, the thermal conductance is insensitive to the change of length. By comparing the ZGNRs embedding finite, semi-infinite and infinite long defects, we find that the thermal conductance of ZGNR embedding an infinite long defect is higher than that of ZGNR embedding a semi-infinite defect, while the thermal conductance of the latter is higher than that of ZGNR embedding a finite long defect. This is due to the fact that different structures possess different numbers of scattering interfaces in the phonon transmission direction. The more the scattering interfaces, the lower the thermal conductance is. These thermal transport phenomena are explained by analyzing transmission coefficient and local density of states. These results indicate that linear defects can tune thermal transport property of ZGNR efficiently.
    • 基金项目: 国家自然科学基金(批准号: 11074213, 51176161, 51006086) 和湖南省自然科学基金省市联合项目(批准号: 10JJ9001) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074213, 51176161, 51006086), and Joint Funds of Hunan Provincial Natural Science Foundation of China (Grant No. 10JJ9001).
    [1]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 58 8537]

    [2]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [3]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 58 5726]

    [4]

    Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [7]

    Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115

    [8]

    Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105

    [9]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 58 1931]

    [10]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 047106]

    [11]

    Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192

    [12]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954

    [13]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 58 7156]

    [14]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [15]

    Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]

    [16]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [17]

    Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]

    [18]

    Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [19]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [20]

    Peng X Y, Ahuja R 2008 Nano Lett. 8 4464

    [21]

    Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354

    [22]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326

    [23]

    Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501

    [24]

    Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868

    [25]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461

    [26]

    Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012

    [27]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [29]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 55 3552]

    [30]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [31]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 61 076501]

    [32]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [33]

    Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901

    [34]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [35]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [36]

    Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402

    [37]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [38]

    Mingo N 2006 Phys. Rev. B 74 125402

    [39]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [40]

    Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851

  • [1]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 58 8537]

    [2]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [3]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 58 5726]

    [4]

    Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [7]

    Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115

    [8]

    Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105

    [9]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 58 1931]

    [10]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 047106]

    [11]

    Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192

    [12]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954

    [13]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 58 7156]

    [14]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [15]

    Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]

    [16]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [17]

    Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]

    [18]

    Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [19]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [20]

    Peng X Y, Ahuja R 2008 Nano Lett. 8 4464

    [21]

    Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354

    [22]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326

    [23]

    Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501

    [24]

    Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868

    [25]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461

    [26]

    Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012

    [27]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [29]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 55 3552]

    [30]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [31]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 61 076501]

    [32]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [33]

    Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901

    [34]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [35]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [36]

    Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402

    [37]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [38]

    Mingo N 2006 Phys. Rev. B 74 125402

    [39]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [40]

    Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851

  • [1] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响.  , 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [2] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [3] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化.  , 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [4] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211477
    [5] 秦志辉. 类石墨烯锗烯研究进展.  , 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [6] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响.  , 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [7] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流.  , 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [9] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [10] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [11] 彭小芳, 陈丽群, 罗勇锋, 刘凌虹, 王凯军. 含双T形量子结构的量子波导中声学声子输运和热导.  , 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [12] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系.  , 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [13] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究.  , 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [14] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究.  , 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [15] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导.  , 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [16] 彭小芳, 王新军, 龚志强, 陈丽群. 量子点调制的一维量子波导中声学声子输运和热导.  , 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [17] 鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新. L型石墨纳米结的热输运.  , 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [18] 聂六英, 李春先, 周晓萍, 程芳, 王成志. 结构缺陷对量子波导腔中热导的调控.  , 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [19] 姚凌江, 王玲玲. 含半圆弧形腔的量子波导中声学声子输运和热导特性.  , 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [20] 赵 俊, 申彩霞, 周 放, 熊季午. 磁场对La2-xSrxCuO4单晶热导的影响研究.  , 2005, 54(8): 3845-3850. doi: 10.7498/aps.54.3845
计量
  • 文章访问数:  6954
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-10
  • 修回日期:  2012-11-14
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map