Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation

Deng Xu-Liang Ji Xian-Fei Wang De-Jun Huang Ling-Qin

Citation:

First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation

Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin
PDF
HTML
Get Citation
  • In the production of SiC electronic devices, one of the main challenges is the fabrication of good Ohmic contacts due to the difficulty in finding the metals with low Schottky barriers of wide band gap SiC. Therefore, reducing the Schottky barrier height (SBH) at the metal/SiC interface is of great importance. In this paper, the effects of graphene intercalation on the SBH in different metals (Ag, Ti, Cu, Pd, Ni, Pt)/4H-SiC interfaces are studied by combining the average electrostatic potential and local density of states calculation methods based on first-principles plane wave pseudopotential density functional theory. The calculation results show that single-layer graphene intercalation can reduce the SBH of metal/4H-SiC contact. When the two layers of graphene are inserted, the SBH are further reduced. Especially, the contact between Ni and Ti exhibits negative SBH values, inferring that good Ohmic contacts are formed. When layers of graphene continue to increase, the SBH no longer changes obviously. By analyzing the differential charge density and the local density of states of the interface, the mechanism of SBH reduction may be that the dangling bonds on the SiC surface are saturated by the graphene C atoms and the influence of the metal-induced energy gap state at the interface is reduced, thereby reducing the interface state density. In addition, graphene and the corresponding new phases at the interface have low work functions. Moreover, an interfacial electric dipole layer may be formed at the SiC/graphene interface which also contributes to barrier reduction.
      Corresponding author: Wang De-Jun, dwang121@dlut.edu.cn ; Huang Ling-Qin, lqhuang@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074071, 61874017), the Xuzhou Science and Technology Project, China (Grant No. KC21008), the 2021 “Qinglan” Project of Jiangsu Higher Education Institutions, China, and the Jiangsu Normal University Postgraduate Scientific Research and Practice Innovation Project, China (Grant No. 2021XKT0183).
    [1]

    Tian R, Ma C, Wu J, Guo Z, Yang X, Fan Z 2021 J. Semicond. 42 061801Google Scholar

    [2]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [3]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [4]

    Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V, Piotrowska A 2016 Adv. Cond. Matter. Phys. 2016 9273702Google Scholar

    [5]

    Al-Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar

    [6]

    Nikitina I P, Vassilevski K V, Wright N G, Horsfall A B, O’Neill A G, Johnson C M 2005 J. Appl. Phys. 97 083709Google Scholar

    [7]

    Liu F, Hsia B, Carraro C, Pisano A P, Maboudian R 2010 Appl. Phys. Lett. 97 262107Google Scholar

    [8]

    Seyller T, Emtsev K V, Speck F, Gao K Y, Ley L 2006 Appl. Phys. Lett. 88 242103Google Scholar

    [9]

    Lundberg N, Östling M 1993 Appl. Phys. Lett. 63 3069Google Scholar

    [10]

    Reshanov S A, Emtsev K V, Speck F, Gao K Y, Seyller T K, Pensl G, Ley L 2008 Phys. Status Solidi B 245 1369Google Scholar

    [11]

    黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢 2021 70 207302Google Scholar

    Huang L Q, Zhu J, Ma Y, Liang T, Lei C, Li Y W, Gu X G 2021 Acta Phys. Sin. 70 207302Google Scholar

    [12]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 25301Google Scholar

    [13]

    Nagashio K, Nishimura T, Kita K, Toriumi A 2009 International Electron Devices Meeting (IEDM) Baltimore, MD December 7–9, 2009 p527

    [14]

    Røst H I, Chellappan R K, Strand F S, Grubišić-Čabo A, Reed B P, Prieto M J, Tǎnase L C, Caldas L D S, Wongpinij T, Euaruksakul C, Schmidt T, Tadich A, Cowie B C C, Li Z, Cooil S P, Wells J W 2021 J. Phys. Chem. C 125 4243Google Scholar

    [15]

    Yoon H H, Song W, Jung S, Kim J, Mo K, Choi G, Jeong H Y, Lee J H, Park K 2019 ACS Appl. Mater. Inter. 11 47182Google Scholar

    [16]

    Wu Y, Ji L, Lin Z, Hong M, Wang S, Zhang Y 2019 Curr. Appl. Phys. 19 521Google Scholar

    [17]

    Jia Y, Sun X, Shi Z, Jiang K, Wu T, Liang H, Cui X, Lü W, Li D 2021 Diamond. Relat. Mater. 115 108355Google Scholar

    [18]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [19]

    Perdew J P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Ceperley D M, Berni J A 1980 Phys. Rev. Lett. 45 566Google Scholar

    [21]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [22]

    王奇, 唐法威, 侯超, 吕皓, 宋晓艳 2019 68 077101Google Scholar

    Wang Q, Tang F W, Hou C, Lv H, Song X Y 2019 Acta Phys. Sin. 68 077101Google Scholar

    [23]

    Mattausch A, Pankratov O 2007 Phys. Rev. Lett. 99 076802Google Scholar

    [24]

    Xu B, Zhu C, He X, Zang Y, Lin S, Li L, Feng S, Lei Q 2018 Adv. Condens. Matter Phys. 2018 8010351

    [25]

    Li L, Jin W, Yang H, Gao K, Guo P, Pang X, Volinsky A A. 2018 Microelectron. Reliab. 83 119Google Scholar

    [26]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [27]

    Oh Y J, Lee A T, Noh H K, Chang K J 2013 Phys. Rev. B 87 075325Google Scholar

    [28]

    Kohyama M, Hoekstra J 2000 Phys. Rev. B 61 2672Google Scholar

    [29]

    Tanaka S, Tamura T, Okazaki K, Ishibashi S, Kohyama M 2006 Mater. Trans. 47 2690Google Scholar

    [30]

    Profeta G, Blasetti A, Picozzi S, Continenza A, Freeman A. J 2001 Phys. Rev. B 64 235312Google Scholar

    [31]

    Kozlov S M, Vines F, Görling A 2012 J. Phys. Chem. C 116 7360Google Scholar

    [32]

    Cicek A, Bülent U L U Ğ 2021 Balkan J. Electr. Comput. Eng. 9 171

    [33]

    王菁, 李美成 2000 半导体光电 21 261Google Scholar

    Wang J, Li M C 2000 Semicond. Opt. 21 261Google Scholar

    [34]

    Chen Y, Xu X, Liu P 2019 J. Phys. Chem. C 124 1362

    [35]

    Li J B, Wang X H, Wang W J 2020 J. Infrared Millimeter Waves 39 401

    [36]

    Song S M, Park J K, Sul O J, Cho B J 2012 Nano Lett. 12 3887Google Scholar

    [37]

    Heine V 1965 Phys. Rev. 138 A1689Google Scholar

    [38]

    Sajjad M, Yang X, Altermatt P, Singh N, Schwingenschlögl U, Wolf D S 2019 Appl. Phys. Lett. 114 071601Google Scholar

  • 图 1  单层石墨烯/SiC (0001)的接触界面 (a) 侧视图; (b) 俯视图

    Figure 1.  Side view (a) and top view (b) of single-layer graphene on SiC(0001) surface.

    图 2  金属/SiC接触界面SBH与平均静电势关系的能带结构

    Figure 2.  Schematic band diagram shows the relationship between SBH and planar-averaged local potentials for metal/SiC contact.

    图 3  Ti/1GR/SiC沿z轴的平均静电势

    Figure 3.  The planar-averaged local potential for Ti/1GR/SiC along the z-axis.

    图 4  不同层数石墨烯过渡层对金属/SiC接触SBH的影响

    Figure 4.  The effects of graphene intercalation on the SBH of metal/SiC contacts.

    图 5  Cu(111)/SiC体系在SiC区域的局域态密度图 (a) Cu/SiC; (b) Cu/1GR/SiC; (c) Cu/2GR/SiC; (d) Cu/3GR/SiC

    Figure 5.  Local density of states of SiC region for (a) Cu/SiC, (b) Cu/1GR/SiC, (c) Cu/2GR /SiC, and (d) Cu/3GR/SiC systems.

    图 6  (a) Ni/1GR/4H-SiC(0001) 和 (b) Cu/1GR/4H-SiC(0001)的差分电荷密度图, 蓝色区域代表失去电子, 红色区域代表得到电子

    Figure 6.  The difference of charge density for (a) the Ni/1GR/4H-SiC (0001) and (b) the Cu/1GR/4H-SiC (0001). The blue regions represent losing electrons. The red regions represent gaining electrons.

    图 7  (a) 金属/4H-SiC和 (b) 金属/GR/4H-SiC接触界面能带图

    Figure 7.  Schematic band diagrams of (a) metal/4H-SiC and (b) metal/GR/4H-SiC.

    图 8  (a) Ti/4H-SiC, (b) Ti/1GR/4H-SiC, (c) Ti/2GR/4H-SiC, (d) Ti/3GR/4H-SiC 以及 (e) Pt/1GR/4H-SiC SiC顶层碳硅层的局域态密度图

    Figure 8.  Local density of states of the first carbon silicon layer for (a) Ti/4H-SiC, (b) Ti/1GR/ 4H-SiC, (c) Ti/2GR/4H-SiC, (d) Ti/3GR/4H-SiC and (e) Pt/1GR/4H-SiC.

    表 1  Cu不同切面与4H-SiC(0001)接触体系的$ {E_{{\text{M/SiC}}}} $, $ {E_{\text{M}}} $, $ {E_{{\text{SiC}}}} $$ {W_{{\text{ad}}}} $

    Table 1.  $ {E_{{\text{M/SiC}}}} $, $ {E_{\text{M}}} $, $ {E_{{\text{SiC}}}} $and $ {W_{{\text{ad}}}} $ values for the different Cu planes contact to 4H-SiC(0001).

    界面体系$ {E_{{\text{M/SiC}}}} $/eV$ {E_{\text{M}}} $/eV$ {E_{{\text{SiC}}}} $/eV$ {W_{{\text{ad}}}} $/$(\rm J {\cdot} c{m^{ - 2} })$
    Cu(111)/4H-SiC(0001)–154329.42–134459.95–19851.120.0562
    Cu(110)/4H-SiC(0001)–164264.27–134455.87–29790.060.0279
    Cu(001)/4H-SiC(0001)–154340.26–134456.34–19865.270.0515
    DownLoad: CSV

    表 2  晶格失配后各金属超胞的Wm与理论值和文献[26]中实验值对比

    Table 2.  The calculated Wm values of the metal supercells after lattice mismatching, compared with the theoretical and the experimental values in reference [26].

    MetalWm/eV理论值/eV实验值[26]/eV
    Ag4.524.194.26
    Ti4.434.384.33
    Cu4.684.514.65
    Pd5.164.895.12
    Ni5.124.925.15
    Pt5.765.315.65
    DownLoad: CSV

    表 3  平均静电势与局域态密度计算方法计算的各接触体系${\phi _{{\text{Bn}}}}$值 (单位: eV)

    Table 3.  ${\phi _{{\text{Bn}}}}$ values for the contacts obtained from planar averaged electrostatic potential and local density of states calculation methods (in eV).

    计算方法GR layersAgTiCuPdNiPt
    平均静电势法01.21.51.21.51.11.6
    10.250.50.70.60.251.4
    20.1–0.10.60.5–0.450.8
    30.1–0.10.60.5–0.450.8
    局域态密度法011.211.311.3
    10.20.30.50.40.21
    20.1–0.150.40.3–0.50.9
    30.1–0.150.40.3–0.50.9
    DownLoad: CSV
    Baidu
  • [1]

    Tian R, Ma C, Wu J, Guo Z, Yang X, Fan Z 2021 J. Semicond. 42 061801Google Scholar

    [2]

    Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar

    [3]

    Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar

    [4]

    Kuchuk A V, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, Kaminska E, Kladko V, Piotrowska A 2016 Adv. Cond. Matter. Phys. 2016 9273702Google Scholar

    [5]

    Al-Ahmadi N A 2020 Mater. Res. Express 7 032001Google Scholar

    [6]

    Nikitina I P, Vassilevski K V, Wright N G, Horsfall A B, O’Neill A G, Johnson C M 2005 J. Appl. Phys. 97 083709Google Scholar

    [7]

    Liu F, Hsia B, Carraro C, Pisano A P, Maboudian R 2010 Appl. Phys. Lett. 97 262107Google Scholar

    [8]

    Seyller T, Emtsev K V, Speck F, Gao K Y, Ley L 2006 Appl. Phys. Lett. 88 242103Google Scholar

    [9]

    Lundberg N, Östling M 1993 Appl. Phys. Lett. 63 3069Google Scholar

    [10]

    Reshanov S A, Emtsev K V, Speck F, Gao K Y, Seyller T K, Pensl G, Ley L 2008 Phys. Status Solidi B 245 1369Google Scholar

    [11]

    黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢 2021 70 207302Google Scholar

    Huang L Q, Zhu J, Ma Y, Liang T, Lei C, Li Y W, Gu X G 2021 Acta Phys. Sin. 70 207302Google Scholar

    [12]

    Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 25301Google Scholar

    [13]

    Nagashio K, Nishimura T, Kita K, Toriumi A 2009 International Electron Devices Meeting (IEDM) Baltimore, MD December 7–9, 2009 p527

    [14]

    Røst H I, Chellappan R K, Strand F S, Grubišić-Čabo A, Reed B P, Prieto M J, Tǎnase L C, Caldas L D S, Wongpinij T, Euaruksakul C, Schmidt T, Tadich A, Cowie B C C, Li Z, Cooil S P, Wells J W 2021 J. Phys. Chem. C 125 4243Google Scholar

    [15]

    Yoon H H, Song W, Jung S, Kim J, Mo K, Choi G, Jeong H Y, Lee J H, Park K 2019 ACS Appl. Mater. Inter. 11 47182Google Scholar

    [16]

    Wu Y, Ji L, Lin Z, Hong M, Wang S, Zhang Y 2019 Curr. Appl. Phys. 19 521Google Scholar

    [17]

    Jia Y, Sun X, Shi Z, Jiang K, Wu T, Liang H, Cui X, Lü W, Li D 2021 Diamond. Relat. Mater. 115 108355Google Scholar

    [18]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [19]

    Perdew J P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [20]

    Ceperley D M, Berni J A 1980 Phys. Rev. Lett. 45 566Google Scholar

    [21]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [22]

    王奇, 唐法威, 侯超, 吕皓, 宋晓艳 2019 68 077101Google Scholar

    Wang Q, Tang F W, Hou C, Lv H, Song X Y 2019 Acta Phys. Sin. 68 077101Google Scholar

    [23]

    Mattausch A, Pankratov O 2007 Phys. Rev. Lett. 99 076802Google Scholar

    [24]

    Xu B, Zhu C, He X, Zang Y, Lin S, Li L, Feng S, Lei Q 2018 Adv. Condens. Matter Phys. 2018 8010351

    [25]

    Li L, Jin W, Yang H, Gao K, Guo P, Pang X, Volinsky A A. 2018 Microelectron. Reliab. 83 119Google Scholar

    [26]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [27]

    Oh Y J, Lee A T, Noh H K, Chang K J 2013 Phys. Rev. B 87 075325Google Scholar

    [28]

    Kohyama M, Hoekstra J 2000 Phys. Rev. B 61 2672Google Scholar

    [29]

    Tanaka S, Tamura T, Okazaki K, Ishibashi S, Kohyama M 2006 Mater. Trans. 47 2690Google Scholar

    [30]

    Profeta G, Blasetti A, Picozzi S, Continenza A, Freeman A. J 2001 Phys. Rev. B 64 235312Google Scholar

    [31]

    Kozlov S M, Vines F, Görling A 2012 J. Phys. Chem. C 116 7360Google Scholar

    [32]

    Cicek A, Bülent U L U Ğ 2021 Balkan J. Electr. Comput. Eng. 9 171

    [33]

    王菁, 李美成 2000 半导体光电 21 261Google Scholar

    Wang J, Li M C 2000 Semicond. Opt. 21 261Google Scholar

    [34]

    Chen Y, Xu X, Liu P 2019 J. Phys. Chem. C 124 1362

    [35]

    Li J B, Wang X H, Wang W J 2020 J. Infrared Millimeter Waves 39 401

    [36]

    Song S M, Park J K, Sul O J, Cho B J 2012 Nano Lett. 12 3887Google Scholar

    [37]

    Heine V 1965 Phys. Rev. 138 A1689Google Scholar

    [38]

    Sajjad M, Yang X, Altermatt P, Singh N, Schwingenschlögl U, Wolf D S 2019 Appl. Phys. Lett. 114 071601Google Scholar

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Liu Yuan-Feng, Li Bin-Cheng, Zhao Bin-Xing, Liu Hong. Detection of subsurface defects in silicon carbide bulk materials with photothermal radiometry. Acta Physica Sinica, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [3] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [5] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [6] Yu Zi-Heng, Ma Chun-Hong, Bai Shao-Xian. Effect of sharp edge of ring-groove-structures in SiC surface. Acta Physica Sinica, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [7] Ding Qing-Song, Luo Chao-Bo, Peng Xiang-Yang, Shi Xi-Zhi, He Chao-Yu, Zhong Jian-Xin. First principles study of distributions of Si atoms and structures of siligraphene g-SiC7. Acta Physica Sinica, 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [8] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [9] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [10] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [11] Huang Yi-Hua, Jiang Dong-Liang, Zhang Hui, Chen Zhong-Ming, Huang Zheng-Ren. Ferromagnetism of Al-doped 6H-SiC and theoretical calculation. Acta Physica Sinica, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [12] Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou. Effect of different annealing treatment methods on the Ni/SiC contact interface properties. Acta Physica Sinica, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [13] Yang Shuai, Tang Xiao-Yan, Zhang Yu-Ming, Song Qing-Wen, Zhang Yi-Men. Influence of charge imbalance on breakdown voltage of 4H-SiC semi-superjunction VDMOSFET. Acta Physica Sinica, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [14] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [15] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [16] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [17] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. The study of optimal fitting parameter for C 1s spectra of SiC surface. Acta Physica Sinica, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [18] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. Study on the chemical states of the surface of SiC epilayer. Acta Physica Sinica, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [19] Gao Jin-Xia, Zhang Yi-Men, Tang Xiao-Yan, Zhang Yu-Ming. Extraction of channel carrier concentration using C-V method for SiC buried-channel MOSFET. Acta Physica Sinica, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [20] Shang Ye-Chun, Liu Zhong-Li, Wang Shu-Rui. Study on the reverse characteristics of Ti/6H-SiC Schottky contacts. Acta Physica Sinica, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
Metrics
  • Abstract views:  6697
  • PDF Downloads:  210
  • Cited By: 0
Publishing process
  • Received Date:  27 September 2021
  • Accepted Date:  06 November 2021
  • Available Online:  03 March 2022
  • Published Online:  05 March 2022

/

返回文章
返回
Baidu
map