Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast dynamic optical properties of graphene

Jin Qin Dong Hai-Ming Han Kui Wang Xue-Feng

Citation:

Ultrafast dynamic optical properties of graphene

Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene exhibits excellent ultrafast optical properties due to its unique electronic structure. In this paper we investigate theoretically the ultrafast dynamic optical properties of graphene based on the Bloch-equations, and introduce the theoretical model of graphene. First, we give the energy which has a linear relationship with the wave vector k. The behavior of electrons in the vicinity of the two Dirac points can be described by the massless Dirac-equation, thus we have the Dirac equation of graphene. Second, we discuss the interaction between graphene and light field. The Bloch-equations of graphene are obtained through the Heisenberg equation and then we discuss the photon carriers,electric polarization and optical current change over time by analyzing the Bloch-equations. It is found that the nonequilibrium carriers in graphene induced by a terahertz field can be built in 20-200 fs due to the Pauli blocking and the conservation of energy principle. The photon carrier density will increase with the frequency of enhanced light field. Thus an optical current can be created rapidly within 1 ps. A graphene system responds linearly to the external optical field for 2evFE0tħ, while the graphene systems respond nonlinearly to the external optical field, where E0 and are respectively the intensity and the frequency of the light, t is the time and vF the Dirac velocity in graphene. The electric polarization and optical current increase with increasing photon energies. These theoretical results are in agreement with recent experimental findings and indicate that graphene exhibits important features and has practical applications in the ultrafast optic filed, especially in terahertz field.
      Corresponding author: Dong Hai-Ming, hmdong@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry (Grant No.2013QNA29), and by the National Natural Science Foundation of China (Grant No. 11247002).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Science 102 10451

    [3]

    Geim A K, MacDonald A H 2007 Phys. Today 60 35

    [4]

    Williams J R, Di C L, Marcus C M 2007 Science 317 638

    [5]

    Nomura K, Mac A H 2006 Phys. Rev. Lett. 96 6602

    [6]

    Brink J 2007 Nat. Nanotechnol. 2 199

    [7]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Heersche H B, Jarillo H P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Solid State Commun 143 72

    [10]

    Vozmediano M A H, Lopez-Saneho M P, Stauber T, Guinea F 2005 Phys. Rev. B 72 5121

    [11]

    Dragoman M, Dragoman D, Deligiorgis G, Konstantinidis G, Neculoiu D, Cismaru A, Plana R 2009 J. Appl. Phys. 106 044312

    [12]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [13]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [14]

    Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M, F. Javier Garcia de Abajo, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299

    [15]

    Fang Z Y, Liu Z, Wang Y M, Ajayan P M, Nordlander P, Halas N J 2012 Nano Letters 12 3808

    [16]

    Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, F. v Javier Garc. ade Abajo 2013 ACS Nano 7 2388

    [17]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015023

    [18]

    Hendry E, Hale P J, Moger J and Savchenko A K 2010 Phys. Rev. Lett. 105 097401

    [19]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [20]

    Ruzicka B A, Wang S, Liu J W, Loh K P, Wu J Z, Zhao H 2012 Optics Materials Express 2 708

    [21]

    Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G 2008 Applied Physics Letters 92 042116

    [22]

    Liu Z B, Zhao X, Zhang X L, Yan X Q, Wu Y P, Chen Y S, Tian J G 2011 The Journal of Physical Chemistry Letters 2 1972

    [23]

    Xing G H, Guo H C, Zhang X H, Sum T C, Huan C H A 2010 Optics Express 18 4564

    [24]

    Brida D, Manzoni C, Cerullo G, Tomadin A, Polini M, Nair R R, Geim A K, Novoselov K S, Milana S, Lombardo A, Ferrari A C 2012 Conference on Lasers and Electro-Optics San Jose, California United States, May 60-11, 2012 pQTh3H.1

    [25]

    Sun D, Divin C, Mihnev M, Winzer T, Malic E, Knorr A, Sipe J E, Berger C, Heer W A D, First P N, Norris T B 2012 New Journal of Physics 14 105012

    [26]

    Søren Ulstrup, Johannsen J C, Crepaldi A, Cilento F, Zacchigna M, Cacho C, Chapman R T, Springate E, Fromm F, Raidel C, Seyller T, Parmigiani F, Grioni M Hofmann P 2015 J. Phys.: Condensed Matter 27 164206

    [27]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [28]

    Breusing M, Kuehn S, Winzer T, Malic E, Milde F, Severin N, Rabe J P, Ropers C, Knorr A, Elsaesser T 2011 Phys. Rev. B 83 153410

    [29]

    Xu W, Dong H M, Li L L, Yao J Q, Vasilopoulos P, Peeters F M 2010 Phys. Rev. B 82 125304

    [30]

    Dong H M, Han K, Xu W 2014 Journal of Applied Physics 115 063503

    [31]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 62 237804]

    [32]

    Ang Y S, Chen Q J, Zhang C 2015 Front. Optoelectron. 8 3

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Science 102 10451

    [3]

    Geim A K, MacDonald A H 2007 Phys. Today 60 35

    [4]

    Williams J R, Di C L, Marcus C M 2007 Science 317 638

    [5]

    Nomura K, Mac A H 2006 Phys. Rev. Lett. 96 6602

    [6]

    Brink J 2007 Nat. Nanotechnol. 2 199

    [7]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Heersche H B, Jarillo H P, Oostinga J B, Vandersypen L M K, Morpurgo A F 2007 Solid State Commun 143 72

    [10]

    Vozmediano M A H, Lopez-Saneho M P, Stauber T, Guinea F 2005 Phys. Rev. B 72 5121

    [11]

    Dragoman M, Dragoman D, Deligiorgis G, Konstantinidis G, Neculoiu D, Cismaru A, Plana R 2009 J. Appl. Phys. 106 044312

    [12]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [13]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [14]

    Fang Z Y, Wang Y M, Schlather A E, Liu Z, Ajayan P M, F. Javier Garcia de Abajo, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299

    [15]

    Fang Z Y, Liu Z, Wang Y M, Ajayan P M, Nordlander P, Halas N J 2012 Nano Letters 12 3808

    [16]

    Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, F. v Javier Garc. ade Abajo 2013 ACS Nano 7 2388

    [17]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 015023

    [18]

    Hendry E, Hale P J, Moger J and Savchenko A K 2010 Phys. Rev. Lett. 105 097401

    [19]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [20]

    Ruzicka B A, Wang S, Liu J W, Loh K P, Wu J Z, Zhao H 2012 Optics Materials Express 2 708

    [21]

    Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G 2008 Applied Physics Letters 92 042116

    [22]

    Liu Z B, Zhao X, Zhang X L, Yan X Q, Wu Y P, Chen Y S, Tian J G 2011 The Journal of Physical Chemistry Letters 2 1972

    [23]

    Xing G H, Guo H C, Zhang X H, Sum T C, Huan C H A 2010 Optics Express 18 4564

    [24]

    Brida D, Manzoni C, Cerullo G, Tomadin A, Polini M, Nair R R, Geim A K, Novoselov K S, Milana S, Lombardo A, Ferrari A C 2012 Conference on Lasers and Electro-Optics San Jose, California United States, May 60-11, 2012 pQTh3H.1

    [25]

    Sun D, Divin C, Mihnev M, Winzer T, Malic E, Knorr A, Sipe J E, Berger C, Heer W A D, First P N, Norris T B 2012 New Journal of Physics 14 105012

    [26]

    Søren Ulstrup, Johannsen J C, Crepaldi A, Cilento F, Zacchigna M, Cacho C, Chapman R T, Springate E, Fromm F, Raidel C, Seyller T, Parmigiani F, Grioni M Hofmann P 2015 J. Phys.: Condensed Matter 27 164206

    [27]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [28]

    Breusing M, Kuehn S, Winzer T, Malic E, Milde F, Severin N, Rabe J P, Ropers C, Knorr A, Elsaesser T 2011 Phys. Rev. B 83 153410

    [29]

    Xu W, Dong H M, Li L L, Yao J Q, Vasilopoulos P, Peeters F M 2010 Phys. Rev. B 82 125304

    [30]

    Dong H M, Han K, Xu W 2014 Journal of Applied Physics 115 063503

    [31]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 62 237804]

    [32]

    Ang Y S, Chen Q J, Zhang C 2015 Front. Optoelectron. 8 3

  • [1] Cui Lei, Liu Hong-Mei, Ren Chong-Dan, Yang Liu, Tian Hong-Yu, Wang Sa-Ke. Influence of local deformation on valley transport properties in the line defect of graphene. Acta Physica Sinica, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [2] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [3] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] He Jian-Lin, Liu Gui-Li, Li Xin-Yue. Effect of twisting deformation on electronic structure and optical properties of gold-doped black phosphorene. Acta Physica Sinica, 2021, 70(22): 226301. doi: 10.7498/aps.70.20210795
    [5] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [7] Lin Kui-Xin,  Li Duo-Sheng,  Ye Yin,  Jiang Wu-Gui,  Ye Zhi-Guo,  Qinghua Qin,  Zou Wei. Review of fabrication methods, physical properties, and applications of twisted bilayer graphene. Acta Physica Sinica, 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [8] Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao. Dynamic beam-steering in wide angle range based on tunable graphene metasurface. Acta Physica Sinica, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [9] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [10] Wang Gong-Chang, Wei Kai, Li Yan. Simulations of return flux of polychromatic laser guide stars based on Bloch equations. Acta Physica Sinica, 2018, 67(5): 054204. doi: 10.7498/aps.67.20171940
    [11] Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu. Fabrication of zigzag-edged graphene antidot lattice and its transport properties. Acta Physica Sinica, 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [12] Fan Da-Zhi, Liu Gui-Li, Wei Lin. Electron-theoretical study on the influences of torsional deformation on electrical and optical properties of O atom absorbed graphene. Acta Physica Sinica, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [13] Yu Zhong, Dang Zhong, Ke Xi-Zheng, Cui Zhen. Optical and electronic properties of N/B doped graphene. Acta Physica Sinica, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [14] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [15] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [16] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [19] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [20] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
Metrics
  • Abstract views:  7088
  • PDF Downloads:  391
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2015
  • Accepted Date:  15 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map