-
Using nonequilibrium Green's function method, the thermal transport properties of zigzag graphene nanoribbons (ZGNR) embedding a finite (semi-infinite or infinite) long linear defect are investigated in this paper. The results show that defect type and defect length have significant influence on the thermal conductance of ZGNR. When the embedded linear defects have the same lengths, thermal conductance of ZGNR embedding t5t7 defect is lower than that of ZGNR embedding Stone-Wales defect. As for the ZGNR embedding finite and the same type defects, their thermal conductance reduce with the increase of the defect length. However, as the linear defect is long enough, the thermal conductance is insensitive to the change of length. By comparing the ZGNRs embedding finite, semi-infinite and infinite long defects, we find that the thermal conductance of ZGNR embedding an infinite long defect is higher than that of ZGNR embedding a semi-infinite defect, while the thermal conductance of the latter is higher than that of ZGNR embedding a finite long defect. This is due to the fact that different structures possess different numbers of scattering interfaces in the phonon transmission direction. The more the scattering interfaces, the lower the thermal conductance is. These thermal transport phenomena are explained by analyzing transmission coefficient and local density of states. These results indicate that linear defects can tune thermal transport property of ZGNR efficiently.
-
Keywords:
- graphene /
- line defect /
- thermal conductance
[1] Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 58 8537]
[2] Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202
[3] Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 58 5726]
[4] Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714
[5] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[6] Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204
[7] Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115
[8] Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105
[9] Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 58 1931]
[10] Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 047106]
[11] Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192
[12] Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954
[13] Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 58 7156]
[14] Brey L, Fertig H A 2006 Phys. Rev. B 73 235411
[15] Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]
[16] Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805
[17] Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]
[18] Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407
[19] Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501
[20] Peng X Y, Ahuja R 2008 Nano Lett. 8 4464
[21] Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354
[22] Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326
[23] Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501
[24] Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868
[25] Lin X Q, Ni J 2011 Phys. Rev. B 84 075461
[26] Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012
[27] Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806
[28] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[29] Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 55 3552]
[30] Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730
[31] Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 61 076501]
[32] Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302
[33] Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901
[34] Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412
[35] Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170
[36] Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402
[37] Brenner D W 1990 Phys. Rev. B 42 9458
[38] Mingo N 2006 Phys. Rev. B 74 125402
[39] Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381
[40] Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851
-
[1] Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 58 8537]
[2] Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202
[3] Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 58 5726]
[4] Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714
[5] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
[6] Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204
[7] Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115
[8] Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105
[9] Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 58 1931]
[10] Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 61 047106]
[11] Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192
[12] Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954
[13] Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 58 7156]
[14] Brey L, Fertig H A 2006 Phys. Rev. B 73 235411
[15] Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]
[16] Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805
[17] Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]
[18] Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407
[19] Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501
[20] Peng X Y, Ahuja R 2008 Nano Lett. 8 4464
[21] Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354
[22] Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326
[23] Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501
[24] Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868
[25] Lin X Q, Ni J 2011 Phys. Rev. B 84 075461
[26] Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012
[27] Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806
[28] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]
[29] Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 55 3552]
[30] Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730
[31] Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 61 076501]
[32] Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302
[33] Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901
[34] Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412
[35] Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170
[36] Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402
[37] Brenner D W 1990 Phys. Rev. B 42 9458
[38] Mingo N 2006 Phys. Rev. B 74 125402
[39] Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381
[40] Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851
Catalog
Metrics
- Abstract views: 6956
- PDF Downloads: 600
- Cited By: 0