搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锯齿形石墨烯反点网络加工与输运性质研究

张婷婷 成蒙 杨蓉 张广宇

引用本文:
Citation:

锯齿形石墨烯反点网络加工与输运性质研究

张婷婷, 成蒙, 杨蓉, 张广宇

Fabrication of zigzag-edged graphene antidot lattice and its transport properties

Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu
PDF
导出引用
  • 具有特定边界的石墨烯纳米结构在纳电子学、自旋电子学等研究领域表现出良好的应用前景.然而石墨烯加工成纳米结构时,无序的边界不可避免地会降低其载流子迁移率.氢等离子体各向异性刻蚀技术是加工具备完美边界石墨烯微纳结构的一项关键技术,刻蚀后的石墨烯呈现出规则的近原子级平整的锯齿形边界.本文研究了氮化硼上锯齿形边界石墨烯反点网络的磁输运性质,低磁场下可以观测到载流子围绕着一个空位缺陷运动时的公度振荡磁阻峰.随着磁场的增大,朗道能级简并度逐渐增大,载流子的磁输运行为从Shubnikov-de Haas振荡逐渐向量子霍尔效应转变.在零磁场附近可以观测到反点网络周期性空位缺陷的边界散射所导致的弱局域效应.研究结果表明,在氮化硼衬底上利用氢等离子体刻蚀技术加工锯齿形边界石墨烯反点网络,其样品质量会明显提高,这种简单易行的方法为后续高质量石墨烯反点网络的输运研究提供了新思路.
    Graphene nanostructures with defined edges are proposed as a promising platform for the realization of nano-electronics and spin-electronics. However, patterned graphene nanostructure can lead to extra damage and drastically reduce its charge carrier mobility due to the edge disorder. The high flexibility of a top-down patterning method with edge smoothness is extremely desirable. Hydrogen plasma enhanced anisotropic etching graphene is demonstrated to be an efficient method of fabricating zigzag-edge graphene nanostructures. In addition, boron nitride is shown to be an excellent substrate for graphene due to its atomic flatness. Here in this work, we fabricate zigzag edge graphene antidot lattices on a boron nitride substrate via dry transfer method and traditional electron beam lithography, and reactive ion etching followed by hydrogen anisotropic etching approach. At low magnetic fields, weak localization is observed and its visibility is enhanced by intervalley scattering on antidot edges. We observe commensurate features in magnetotransport properties which stem from carriers around one antidot, signifying the high quality of our patterned samples. At high magnetic field, crossover from Shubnikov-de Haas oscillation to quantum Hall effect can be clearly observed due to the high mobility of our zigzag edge graphene antidot lattices. The transport properties of our patterned samples suggest that our fabrication method paves the way for achieving high quality graphene antidot lattices. High quality zigzag edge graphene antidot lattice might be a great platform to study the transport properties of lateral superlattice potential modulation graphene.
      通信作者: 杨蓉, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn ; 张广宇, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61325021,11574361,61390503)和国家重点基础研究发展计划(批准号:2013CB934500,2013CBA01602)资助的课题.
      Corresponding author: Yang Rong, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn ; Zhang Guang-Yu, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, 61390503) and the National Basic Research Program of China (Grant Nos. 2013CB934500, 2013CBA01602).
    [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Liu D P, Yu Z M, Liu Y L 2016 Phys. Rev. B 94 155102

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [5]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat. Nanotechnol. 6 162

    [6]

    Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W, L Y, Yao S, Lu M, Chen Y, Ni Z, You Y, Zhang X, Qin S, Shi Y, Hu W, Xing D, Miao F 2016 Nano Lett. 16 2254

    [7]

    Zhang T T, Wu S, Yang R, Zhang G Y 2017 Frontiers Phys. 12 127206

    [8]

    Yu Z M, Pan H, Yao Y 2015 Phys. Rev. B 92 155419

    [9]

    Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119

    [10]

    Karamitaheri H, Pourfath M, Faez R, Kosina H 2011 J. Appl. Phys. 110 054506

    [11]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [12]

    Shen T, Wu Y Q, Capano M A, Rokhinson L P, Engel L W, Ye P D 2008 Appl. Phys. Lett. 93 122102

    [13]

    Shimizu T, Nakamura J, Tada K, Yagi Y, Haruyama J 2012 Appl. Phys. Lett. 100 023104

    [14]

    Yagi R, Shimomura M, Tahara F, Kobara H, Fukada S 2012 J. Phys. Soc. Jpn. 81 063707

    [15]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [16]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotechnol. 5 190

    [17]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792

    [18]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods R C, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 64 077305]

    [21]

    Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103

    [22]

    Nihey F, Nakamura K, Takamasu T, Kido G, Sakon T, Motokawa M 1999 Phys. Rev. B 59 14872

    [23]

    Smet J H, von Klitzing K, Weiss D, Wegscheider W 1998 Phys. Rev. Lett. 80 4538

    [24]

    Eroms J, Tolkiehn M, Weiss D, Rossler U, de Boeck J, Borghs S 2002 Physica E 12 918

    [25]

    Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V V, Schweizer H 2001 Phys. Rev. Lett. 86 147

    [26]

    Shabani J, Shayegan M, Winkler R 2008 Phys. Rev. Lett. 100 096803

    [27]

    Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J 2015 Nano Lett. 15 8402

    [28]

    Yagi R, Sakakibara R, Ebisuoka R, Onishi J, Watanabe K, Taniguchi T, Iye Y 2015 Phys. Rev. B 92 195406

    [29]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2013 Nat. Phys. 9 225

    [30]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693

    [31]

    Bischoff D, Krhenmann T, Drscher S, Gruner M A, Barraud C, Ihn T, Ensslin K 2012 Appl. Phys. Lett. 101 203103

    [32]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [33]

    Shi Z, Yang R, Zhang L, Wang Y, Liu D, Shi D, Wang E, Zhang G 2011 Adv. Mater. 23 3061

    [34]

    Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101

    [35]

    Wang G L, Xie L, Chen P, Yang R, Shi D X, Zhang G Y 2016 Acta Phys. Sin. 65 196101 (in Chinese) [王国乐, 谢立, 陈鹏, 杨蓉, 时东霞, 张广宇 2016 65 196101]

    [36]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104

  • [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Liu D P, Yu Z M, Liu Y L 2016 Phys. Rev. B 94 155102

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [5]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat. Nanotechnol. 6 162

    [6]

    Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W, L Y, Yao S, Lu M, Chen Y, Ni Z, You Y, Zhang X, Qin S, Shi Y, Hu W, Xing D, Miao F 2016 Nano Lett. 16 2254

    [7]

    Zhang T T, Wu S, Yang R, Zhang G Y 2017 Frontiers Phys. 12 127206

    [8]

    Yu Z M, Pan H, Yao Y 2015 Phys. Rev. B 92 155419

    [9]

    Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119

    [10]

    Karamitaheri H, Pourfath M, Faez R, Kosina H 2011 J. Appl. Phys. 110 054506

    [11]

    Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804

    [12]

    Shen T, Wu Y Q, Capano M A, Rokhinson L P, Engel L W, Ye P D 2008 Appl. Phys. Lett. 93 122102

    [13]

    Shimizu T, Nakamura J, Tada K, Yagi Y, Haruyama J 2012 Appl. Phys. Lett. 100 023104

    [14]

    Yagi R, Shimomura M, Tahara F, Kobara H, Fukada S 2012 J. Phys. Soc. Jpn. 81 063707

    [15]

    Eroms J, Weiss D 2009 New J. Phys. 11 095021

    [16]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotechnol. 5 190

    [17]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792

    [18]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods R C, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594

    [19]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [20]

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 64 077305]

    [21]

    Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103

    [22]

    Nihey F, Nakamura K, Takamasu T, Kido G, Sakon T, Motokawa M 1999 Phys. Rev. B 59 14872

    [23]

    Smet J H, von Klitzing K, Weiss D, Wegscheider W 1998 Phys. Rev. Lett. 80 4538

    [24]

    Eroms J, Tolkiehn M, Weiss D, Rossler U, de Boeck J, Borghs S 2002 Physica E 12 918

    [25]

    Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V V, Schweizer H 2001 Phys. Rev. Lett. 86 147

    [26]

    Shabani J, Shayegan M, Winkler R 2008 Phys. Rev. Lett. 100 096803

    [27]

    Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J 2015 Nano Lett. 15 8402

    [28]

    Yagi R, Sakakibara R, Ebisuoka R, Onishi J, Watanabe K, Taniguchi T, Iye Y 2015 Phys. Rev. B 92 195406

    [29]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2013 Nat. Phys. 9 225

    [30]

    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693

    [31]

    Bischoff D, Krhenmann T, Drscher S, Gruner M A, Barraud C, Ihn T, Ensslin K 2012 Appl. Phys. Lett. 101 203103

    [32]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [33]

    Shi Z, Yang R, Zhang L, Wang Y, Liu D, Shi D, Wang E, Zhang G 2011 Adv. Mater. 23 3061

    [34]

    Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101

    [35]

    Wang G L, Xie L, Chen P, Yang R, Shi D X, Zhang G Y 2016 Acta Phys. Sin. 65 196101 (in Chinese) [王国乐, 谢立, 陈鹏, 杨蓉, 时东霞, 张广宇 2016 65 196101]

    [36]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104

  • [1] 廖晶晶, 康琦, 罗飞, 蔺福军. 温差条件下包含手征活性粒子的封闭圆环的输运.  , 2023, 72(3): 030501. doi: 10.7498/aps.72.20221772
    [2] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响.  , 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [3] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制.  , 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [4] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响.  , 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化.  , 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [7] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用.  , 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [8] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究.  , 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [9] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究.  , 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [10] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [12] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究.  , 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [13] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究.  , 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [15] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究.  , 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [16] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质.  , 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [17] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究.  , 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [18] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] 王光昶, 郑志坚, 谷渝秋, 陈 涛, 张 婷. 利用渡越辐射研究超热电子在固体靶中的输运过程.  , 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [20] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长.  , 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
计量
  • 文章访问数:  6986
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 修回日期:  2017-08-21
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map