搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯莫尔超晶格

卢晓波 张广宇

引用本文:
Citation:

石墨烯莫尔超晶格

卢晓波, 张广宇

Graphene/h-BN Moiré superlattice

Lu Xiao-Bo, Zhang Guang-Yu
PDF
导出引用
  • 石墨烯莫尔超晶格来源于六方氮化硼衬底对石墨烯的二维周期势调控. 由于这种外加的周期势对石墨烯能带具有显著的调制作用, 近年来引发了人们广泛的关注. 利用氮化硼衬底上外延的单晶石墨烯薄膜, 我们系统研究了基底调制下的莫尔超晶格以及相关的物理特性. 首先, 我们在电子端和空穴端都观测到了超晶格狄拉克点, 并且超晶格狄拉克点同本征狄拉克点类似, 都表现出绝缘体的特性. 在低温强磁场下, 可以观测到到单层石墨烯和双层石墨烯的量子霍尔效应. 并且, 从朗道扇形图中, 可以清晰的看到磁场下形成的超晶格朗道能级. 此外, 利用红外光谱的方法研究了强磁场下石墨烯超晶格体系不同朗道能级之间的跃迁, 发现这种跃迁满足有质量狄拉克费米子的行为, 对应38 meV的本征能隙. 在此基础上, 我们在380 meV位置发现一个同超晶格能量对应的光电导峰. 通过利用旋量势中三个不同的势分量对光电导峰进行拟合, 发现赝自旋杂化势起主导作用. 进一步研究表明赝自旋杂化势强度随载流子浓度的增大显著降低, 表明电子-电子相互作用引起的旋量势的重构.
    Graphene Moiré superlattice, a unique 2D periodical structure originated from the interaction between graphene and its supporting substrate h-BN, has attracted great interest recently. Employing epitaxial graphene on h-BN single crystals, we have investigated systematically the physical properties related to the Moiré superlattice. From transport measurements, we can observe the superlattice Dirac points at both electron side and hole side. Similar to the Dirac point, the superlattice Dirac points have insulator behaviors. Under the action of magnetic field, the quantum Hall effects both in monolayer and bilayer graphenes are observed. Also, the Moiré superlattice can lead to the formation of self-similar mini-bands from the Landau fan diagram. According to the infrared optical spectroscopy measurements, the transitions between different Landau levels are characterized by massive Dirac fermions and thus reveal a band-gap of ~38 meV. Moreover, without magnetic fields, an optical conductivity peak related to the Moiré superlattice appears. We use three spinor potential components to explain the optical conductivity peak and demonstrate that the pseudospin-mixing component plays a dominant role in the spinor potential. In addition, the spinor potential depends sensitively on the gate voltage, indicating that the electron–electron interactions play an important part in the renormalization of the spinor potential.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2013CB934500, 2012CB921302)、国家自然科学基金(批准号: 91223204, 61325021)和中国科学院战略性先导科技专项(B类)资助的课题.
    • Funds: Project supported by the National Basic Natural Research Program of China (Grant Nos. 2013CB934500, 2012CB921302), the National Science Foundation of China (Grant Nos. 91223204, 61325021), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Nati. Acad. Sci. 102 10451

    [5]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [6]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K 2006 Nat. Phys. 2 177

    [8]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [9]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [10]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [11]

    Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [12]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427

    [13]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [14]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynskiet M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594

    [15]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382

    [16]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y G, Zhang Y B, Zhang G Y 2013 Nat. Mater. 12 792

    [17]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [18]

    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J 2010 Nat. Nanotechnol. 5 722

    [19]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [20]

    Yang R, Shi Z, Zhang L, Shi D, Zhang G 2011 Nano Lett. 11 4083

    [21]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [22]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [23]

    Chen Z G, Shi Z, Yang W, Lu X, Lai Y, Yan H, Wang F, Zhang G, Li Z 2014 Nat. Commun. 5 4461

    [24]

    Chen X, Wallbank J R, Patel A A, Mucha-Kruczyński M, McCann E, Fal’ko V I 2014 Phys. l Rev. B 89 075401

    [25]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

    [26]

    Sadowski M L, Martinez G, Potemski M 2006 Phys. Rev. Lett. 97 266405

    [27]

    Wallbank J R, Patel A A, Mucha-Kruczyński M, Geim AK, Fal’ko V I 2013 Phys. Rev. B 87 245408

    [28]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [29]

    Abergel D S L, Wallbank J R, Chen X, Mucha-Kruczyński M, Fal’ko V I 2013 New J. Phys. 15 123009

    [30]

    Shi Z, Jin C, Yang W, Ju L, Horng J, Lu X, Bechtel H A, Martin M C, Fu D, Wu J, Watanabe K, Taniguchi T, Zhang Y B, Bai X D, Wang E G, Zhang G Y, Wang F 2014 Nat. Phys. 10 743

    [31]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [32]

    Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113

    [33]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [34]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T 2008 Science 320 1308

    [35]

    Hwang E H, Das S S 2007 Phys. Rev. B 75 205418

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Nati. Acad. Sci. 102 10451

    [5]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [6]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [7]

    Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K 2006 Nat. Phys. 2 177

    [8]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [9]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337

    [10]

    Beenakker C W J 2006 Phys. Rev. Lett. 97 067007

    [11]

    Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [12]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427

    [13]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598

    [14]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynskiet M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594

    [15]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382

    [16]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y G, Zhang Y B, Zhang G Y 2013 Nat. Mater. 12 792

    [17]

    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103

    [18]

    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J 2010 Nat. Nanotechnol. 5 722

    [19]

    Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014

    [20]

    Yang R, Shi Z, Zhang L, Shi D, Zhang G 2011 Nano Lett. 11 4083

    [21]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [22]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [23]

    Chen Z G, Shi Z, Yang W, Lu X, Lai Y, Yan H, Wang F, Zhang G, Li Z 2014 Nat. Commun. 5 4461

    [24]

    Chen X, Wallbank J R, Patel A A, Mucha-Kruczyński M, McCann E, Fal’ko V I 2014 Phys. l Rev. B 89 075401

    [25]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

    [26]

    Sadowski M L, Martinez G, Potemski M 2006 Phys. Rev. Lett. 97 266405

    [27]

    Wallbank J R, Patel A A, Mucha-Kruczyński M, Geim AK, Fal’ko V I 2013 Phys. Rev. B 87 245408

    [28]

    Kindermann M, Uchoa B, Miller D L 2012 Phys. Rev. B 86 115415

    [29]

    Abergel D S L, Wallbank J R, Chen X, Mucha-Kruczyński M, Fal’ko V I 2013 New J. Phys. 15 123009

    [30]

    Shi Z, Jin C, Yang W, Ju L, Horng J, Lu X, Bechtel H A, Martin M C, Fu D, Wu J, Watanabe K, Taniguchi T, Zhang Y B, Bai X D, Wang E G, Zhang G Y, Wang F 2014 Nat. Phys. 10 743

    [31]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206

    [32]

    Horng J, Chen C F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel H A, Martin M, Zettl A, Crommie M F, Shen Y R, Wang F 2011 Phys. Rev. B 83 165113

    [33]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2008 Nat. Phys. 4 532

    [34]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T 2008 Science 320 1308

    [35]

    Hwang E H, Das S S 2007 Phys. Rev. B 75 205418

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态.  , 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合.  , 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [3] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应.  , 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [4] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用.  , 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [5] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展.  , 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [6] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应.  , 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [7] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211815
    [8] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变.  , 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [9] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输.  , 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [10] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展.  , 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [11] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [12] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算.  , 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [13] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [14] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰. 石墨烯纳米结构的制备及带隙调控研究.  , 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [15] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性.  , 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [16] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [17] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性.  , 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [18] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [19] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附.  , 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [20] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质.  , 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
计量
  • 文章访问数:  16761
  • PDF下载量:  1394
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-02-05
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map