Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of graphene-like germanene

Qin Zhi-Hui

Citation:

Recent progress of graphene-like germanene

Qin Zhi-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With tremendous progress of graphene and with the consideration of the compatibility with semiconductor industry, the construction of analogous two-dimensional crystalline systems-new two-dimensional honeycomb and layered materials composed of elements other than carbon, the group IV (Si, Ge) analogs of graphene and the investigation of their fascinated electronic properties have become the frontier topics of condensed matter physics. Theoretical calculation predicts that unlike the planar structure of graphene, the germanene has stable, two-dimensional, low-buckled, honeycomb structure similar to that of silicene, but has much higher spin-orbit band gap than silicene, which is certainly of crucial importance in future electronics. The influences of atomic structures and the buckling of the low-buckled geometry on local electronic structure of the fabricated germanene are also reviewed from the atomic point of view. As theoretical studies on germanene are rapidly increasing, now the major challenge in this field is the preparation of high-quality germanene. Compared with silicene, the germanene has larger Ge-Ge interatomic distance which can weaken the orbital overlaps, resulting in the big difficulty in constructing germanene. In this work we review the recent progress of experimental epitaxial growth of germanene on surfaces, with emphasis on metal surfaces. The growth of quasi-freestanding germanene and its potential applications in nanoelectronics in the future are also discussed.
      Corresponding author: Qin Zhi-Hui, zhqin@hnu.edu.cn,zhqin@wipm.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01600) and the National Natural Science Foundation of China (Grant No. 11574350).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S, Liu Z F 2011 Nat. Commun. 2 522

    [4]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [5]

    Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X H 2012 Angew. Chem. Int. Edit. 51 4856

    [6]

    Wu Z S, Feng X L, Cheng H M 2014 Natl. Sci. Rev. 1 277

    [7]

    Ju L, Velasco Jr J, Huang E, Kahn S, Nosiglia C, Tsai H, Yang W, Taniguchi T, Watanabe K, Zhang Y, Zhang G, Crommie M, Zettl A, Wang F 2014 Nat. Nanotechnol. 9 348

    [8]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)

    [9]

    Takeda K, Shiraish K 1994 Phys. Rev. B 50 14916

    [10]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766

    [11]

    Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131

    [12]

    Cahangirov S, Topsakal M, Aktrk E, Şhin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [13]

    Lebgue S, Eriksson O 2009 Phys. Rev. B 79 115409

    [14]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111

    [15]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106

    [16]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [17]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [18]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [19]

    Roome N J, David Carey J 2014 ACS Appl. Mater. Interfaces 6 7743

    [20]

    Nijamudheen A, Bhattacharjee R, Choudhury S, Datta A 2015 J. Phys. Chem. C 119 3802

    [21]

    Trivedi S, Srivastava A, Kurchania R 2014 J. Comput. Theor. Nanosci. 11 1

    [22]

    Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, L J 2014 Physica E 59 60

    [23]

    Zhuang J, Gao N, Li Z, Xu X, Wang J, Zhao J, Dou S X, Du Y 2017 ACS Nano 11 3553

    [24]

    Li S, Zhang C, Ji W, Li F, Wang P, Hu S, Yan S, Liu Y 2014 Phys. Chem. Chem. Phys. 16 15968

    [25]

    Si C, Liu J, Xu Y, Wu J, Gu B L, Duan W 2014 Phys. Rev. B 89 115429

    [26]

    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113

    [27]

    Xia W, Hu W, Li Z, Yang J L 2014 Phys. Chem. Chem. Phys. 16 22495

    [28]

    Kaloni T P 2014 J. Phys. Chem. C 118 25200

    [29]

    Kaneko S, Tsuchiya H, Kamakura Y, Mori N, Matsuto O 2014 Appl. Phys. Express 7 035102

    [30]

    Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 81 195120

    [31]

    Pang Q, Zhang Y, Zhang J M, Ji V, Xu K W 2011 Nanoscale 3 4330

    [32]

    Kaloni T P, Schwingenschlgla U 2013 J. Appl. Phys. 114 184307

    [33]

    Ma Y, Dai Y, Niu C, Huang B 2012 J. Mater. Chem. 22 12587

    [34]

    Wu S C, Shan G, Yan B 2014 Phys. Rev. Lett. 113 256401

    [35]

    Zlyomi V, Wallbank J R, Fal'ko V I 2014 2D Mater. 1 011005

    [36]

    Yu W, Yan J, Gao S 2015 Nanoscale Res. Lett. 10 351

    [37]

    Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389

    [38]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507

    [39]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [40]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [41]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [42]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [43]

    Li L, Zhao M W 2013 Phys. Chem. Chem. Phys. 15 16853

    [44]

    Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [45]

    Dvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510

    [47]

    Fukaya Y, Matsuda I, Feng B, Mochizuki I, Hyodo T, Shamoto S 2016 2D Mater. 3 035019

    [48]

    Zhang L, Bampoulis P, van Houselt A, Zandvliet H J W 2015 Appl. Phys. Lett. 107 111605

    [49]

    Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B, Zandvliet H J W 2014 J. Phys. Condens. Matter 26 442001

    [50]

    Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801

    [51]

    Guo Z, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435

    [52]

    Wang Y, Li J, Xiong J, Pan Y, Ye M, Guo Y, Zhang H, Quhe R, Lu J 2016 Phys. Chem. Chem. Phys. 18 19451

    [53]

    Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, Carbone C 2014 Phys. Rev. B 89 201416

    [54]

    Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409

    [55]

    Qin Z H, Pan J B, Lu S Z, Shao Y, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046

    [56]

    Dvila M E, Le Lay G 2016 Sci. Rep. 6 20714

    [57]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [58]

    Li X, Wu S, Zhou S, Zhu Z 2014 Nano. Res. Lett. 9 110

    [59]

    Persichetti L, Jardali F, Vach H, Sgarlata A, Berbezier I, De Crescenzi M, Balzarotti A 2016 J. Phys. Chem. Lett. 7 3246

    [60]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804

    [61]

    Katsnelson M I, Fasolino A 2013 Acc. Chem. Res. 46 97

    [62]

    Zhang D, Lou W, Miao M, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S, Liu Z F 2011 Nat. Commun. 2 522

    [4]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [5]

    Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X H 2012 Angew. Chem. Int. Edit. 51 4856

    [6]

    Wu Z S, Feng X L, Cheng H M 2014 Natl. Sci. Rev. 1 277

    [7]

    Ju L, Velasco Jr J, Huang E, Kahn S, Nosiglia C, Tsai H, Yang W, Taniguchi T, Watanabe K, Zhang Y, Zhang G, Crommie M, Zettl A, Wang F 2014 Nat. Nanotechnol. 9 348

    [8]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)

    [9]

    Takeda K, Shiraish K 1994 Phys. Rev. B 50 14916

    [10]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766

    [11]

    Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131

    [12]

    Cahangirov S, Topsakal M, Aktrk E, Şhin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [13]

    Lebgue S, Eriksson O 2009 Phys. Rev. B 79 115409

    [14]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111

    [15]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106

    [16]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [17]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [18]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [19]

    Roome N J, David Carey J 2014 ACS Appl. Mater. Interfaces 6 7743

    [20]

    Nijamudheen A, Bhattacharjee R, Choudhury S, Datta A 2015 J. Phys. Chem. C 119 3802

    [21]

    Trivedi S, Srivastava A, Kurchania R 2014 J. Comput. Theor. Nanosci. 11 1

    [22]

    Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, L J 2014 Physica E 59 60

    [23]

    Zhuang J, Gao N, Li Z, Xu X, Wang J, Zhao J, Dou S X, Du Y 2017 ACS Nano 11 3553

    [24]

    Li S, Zhang C, Ji W, Li F, Wang P, Hu S, Yan S, Liu Y 2014 Phys. Chem. Chem. Phys. 16 15968

    [25]

    Si C, Liu J, Xu Y, Wu J, Gu B L, Duan W 2014 Phys. Rev. B 89 115429

    [26]

    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113

    [27]

    Xia W, Hu W, Li Z, Yang J L 2014 Phys. Chem. Chem. Phys. 16 22495

    [28]

    Kaloni T P 2014 J. Phys. Chem. C 118 25200

    [29]

    Kaneko S, Tsuchiya H, Kamakura Y, Mori N, Matsuto O 2014 Appl. Phys. Express 7 035102

    [30]

    Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 81 195120

    [31]

    Pang Q, Zhang Y, Zhang J M, Ji V, Xu K W 2011 Nanoscale 3 4330

    [32]

    Kaloni T P, Schwingenschlgla U 2013 J. Appl. Phys. 114 184307

    [33]

    Ma Y, Dai Y, Niu C, Huang B 2012 J. Mater. Chem. 22 12587

    [34]

    Wu S C, Shan G, Yan B 2014 Phys. Rev. Lett. 113 256401

    [35]

    Zlyomi V, Wallbank J R, Fal'ko V I 2014 2D Mater. 1 011005

    [36]

    Yu W, Yan J, Gao S 2015 Nanoscale Res. Lett. 10 351

    [37]

    Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389

    [38]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507

    [39]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [40]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [41]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [42]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [43]

    Li L, Zhao M W 2013 Phys. Chem. Chem. Phys. 15 16853

    [44]

    Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [45]

    Dvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510

    [47]

    Fukaya Y, Matsuda I, Feng B, Mochizuki I, Hyodo T, Shamoto S 2016 2D Mater. 3 035019

    [48]

    Zhang L, Bampoulis P, van Houselt A, Zandvliet H J W 2015 Appl. Phys. Lett. 107 111605

    [49]

    Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B, Zandvliet H J W 2014 J. Phys. Condens. Matter 26 442001

    [50]

    Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801

    [51]

    Guo Z, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435

    [52]

    Wang Y, Li J, Xiong J, Pan Y, Ye M, Guo Y, Zhang H, Quhe R, Lu J 2016 Phys. Chem. Chem. Phys. 18 19451

    [53]

    Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, Carbone C 2014 Phys. Rev. B 89 201416

    [54]

    Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409

    [55]

    Qin Z H, Pan J B, Lu S Z, Shao Y, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046

    [56]

    Dvila M E, Le Lay G 2016 Sci. Rep. 6 20714

    [57]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [58]

    Li X, Wu S, Zhou S, Zhu Z 2014 Nano. Res. Lett. 9 110

    [59]

    Persichetti L, Jardali F, Vach H, Sgarlata A, Berbezier I, De Crescenzi M, Balzarotti A 2016 J. Phys. Chem. Lett. 7 3246

    [60]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804

    [61]

    Katsnelson M I, Fasolino A 2013 Acc. Chem. Res. 46 97

    [62]

    Zhang D, Lou W, Miao M, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

  • [1] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [2] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [3] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] Xiao Mei-Xia, Leng Hao, Song Hai-Yang, Wang Lei, Yao Ting-Zhen, He Cheng. Effects of organic molecule adsorption and substrate on electronic structure of germanene. Acta Physica Sinica, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [5] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [6] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [7] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [8] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [9] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [10] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [11] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [12] Wu Hong, Li Feng. Mechanisms on the GeH/ interactions in germanene/germanane bilayer for tuning band structures. Acta Physica Sinica, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [13] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [14] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [15] Zhang Xian, Guo Zhi-Xin, Cao Jue-Xian, Xiao Si-Guo, Ding Jian-Wen. Atomic and electronic structures of silicene and germanene on GaAs(111). Acta Physica Sinica, 2015, 64(18): 186101. doi: 10.7498/aps.64.186101
    [16] Lou Li-Fei, Pan Qing-Biao, Wu Zhi-Hua. A flexible microstructure based on graphene for harvesting weak energy. Acta Physica Sinica, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [17] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [19] Li Li-Min, Pan Hai-Bin, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang, Chen Xiu-Fang, Xu Xian-Gang, Kang Chao-Yang, Tang Jun. Preparation of graphene on different-polarity 6H-SiC substrates and the study of their electronic structures. Acta Physica Sinica, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [20] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
Metrics
  • Abstract views:  11942
  • PDF Downloads:  856
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2017
  • Accepted Date:  12 September 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map