-
With tremendous progress of graphene and with the consideration of the compatibility with semiconductor industry, the construction of analogous two-dimensional crystalline systems-new two-dimensional honeycomb and layered materials composed of elements other than carbon, the group IV (Si, Ge) analogs of graphene and the investigation of their fascinated electronic properties have become the frontier topics of condensed matter physics. Theoretical calculation predicts that unlike the planar structure of graphene, the germanene has stable, two-dimensional, low-buckled, honeycomb structure similar to that of silicene, but has much higher spin-orbit band gap than silicene, which is certainly of crucial importance in future electronics. The influences of atomic structures and the buckling of the low-buckled geometry on local electronic structure of the fabricated germanene are also reviewed from the atomic point of view. As theoretical studies on germanene are rapidly increasing, now the major challenge in this field is the preparation of high-quality germanene. Compared with silicene, the germanene has larger Ge-Ge interatomic distance which can weaken the orbital overlaps, resulting in the big difficulty in constructing germanene. In this work we review the recent progress of experimental epitaxial growth of germanene on surfaces, with emphasis on metal surfaces. The growth of quasi-freestanding germanene and its potential applications in nanoelectronics in the future are also discussed.
-
Keywords:
- germanene /
- graphene /
- electronic structure /
- scanning tunneling microscopy
[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[3] Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S, Liu Z F 2011 Nat. Commun. 2 522
[4] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777
[5] Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X H 2012 Angew. Chem. Int. Edit. 51 4856
[6] Wu Z S, Feng X L, Cheng H M 2014 Natl. Sci. Rev. 1 277
[7] Ju L, Velasco Jr J, Huang E, Kahn S, Nosiglia C, Tsai H, Yang W, Taniguchi T, Watanabe K, Zhang Y, Zhang G, Crommie M, Zettl A, Wang F 2014 Nat. Nanotechnol. 9 348
[8] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)
[9] Takeda K, Shiraish K 1994 Phys. Rev. B 50 14916
[10] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
[11] Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[12] Cahangirov S, Topsakal M, Aktrk E, Şhin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804
[13] Lebgue S, Eriksson O 2009 Phys. Rev. B 79 115409
[14] Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111
[15] Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106
[16] Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802
[17] Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430
[18] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227
[19] Roome N J, David Carey J 2014 ACS Appl. Mater. Interfaces 6 7743
[20] Nijamudheen A, Bhattacharjee R, Choudhury S, Datta A 2015 J. Phys. Chem. C 119 3802
[21] Trivedi S, Srivastava A, Kurchania R 2014 J. Comput. Theor. Nanosci. 11 1
[22] Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, L J 2014 Physica E 59 60
[23] Zhuang J, Gao N, Li Z, Xu X, Wang J, Zhao J, Dou S X, Du Y 2017 ACS Nano 11 3553
[24] Li S, Zhang C, Ji W, Li F, Wang P, Hu S, Yan S, Liu Y 2014 Phys. Chem. Chem. Phys. 16 15968
[25] Si C, Liu J, Xu Y, Wu J, Gu B L, Duan W 2014 Phys. Rev. B 89 115429
[26] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113
[27] Xia W, Hu W, Li Z, Yang J L 2014 Phys. Chem. Chem. Phys. 16 22495
[28] Kaloni T P 2014 J. Phys. Chem. C 118 25200
[29] Kaneko S, Tsuchiya H, Kamakura Y, Mori N, Matsuto O 2014 Appl. Phys. Express 7 035102
[30] Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 81 195120
[31] Pang Q, Zhang Y, Zhang J M, Ji V, Xu K W 2011 Nanoscale 3 4330
[32] Kaloni T P, Schwingenschlgla U 2013 J. Appl. Phys. 114 184307
[33] Ma Y, Dai Y, Niu C, Huang B 2012 J. Mater. Chem. 22 12587
[34] Wu S C, Shan G, Yan B 2014 Phys. Rev. Lett. 113 256401
[35] Zlyomi V, Wallbank J R, Fal'ko V I 2014 2D Mater. 1 011005
[36] Yu W, Yan J, Gao S 2015 Nanoscale Res. Lett. 10 351
[37] Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389
[38] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507
[39] Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501
[40] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[41] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685
[42] Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414
[43] Li L, Zhao M W 2013 Phys. Chem. Chem. Phys. 15 16853
[44] Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S, Gao H J 2014 Adv. Mater. 26 4820
[45] Dvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002
[46] Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510
[47] Fukaya Y, Matsuda I, Feng B, Mochizuki I, Hyodo T, Shamoto S 2016 2D Mater. 3 035019
[48] Zhang L, Bampoulis P, van Houselt A, Zandvliet H J W 2015 Appl. Phys. Lett. 107 111605
[49] Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B, Zandvliet H J W 2014 J. Phys. Condens. Matter 26 442001
[50] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801
[51] Guo Z, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435
[52] Wang Y, Li J, Xiong J, Pan Y, Ye M, Guo Y, Zhang H, Quhe R, Lu J 2016 Phys. Chem. Chem. Phys. 18 19451
[53] Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, Carbone C 2014 Phys. Rev. B 89 201416
[54] Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409
[55] Qin Z H, Pan J B, Lu S Z, Shao Y, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046
[56] Dvila M E, Le Lay G 2016 Sci. Rep. 6 20714
[57] Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408
[58] Li X, Wu S, Zhou S, Zhu Z 2014 Nano. Res. Lett. 9 110
[59] Persichetti L, Jardali F, Vach H, Sgarlata A, Berbezier I, De Crescenzi M, Balzarotti A 2016 J. Phys. Chem. Lett. 7 3246
[60] Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804
[61] Katsnelson M I, Fasolino A 2013 Acc. Chem. Res. 46 97
[62] Zhang D, Lou W, Miao M, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402
-
[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[3] Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S, Liu Z F 2011 Nat. Commun. 2 522
[4] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777
[5] Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X H 2012 Angew. Chem. Int. Edit. 51 4856
[6] Wu Z S, Feng X L, Cheng H M 2014 Natl. Sci. Rev. 1 277
[7] Ju L, Velasco Jr J, Huang E, Kahn S, Nosiglia C, Tsai H, Yang W, Taniguchi T, Watanabe K, Zhang Y, Zhang G, Crommie M, Zettl A, Wang F 2014 Nat. Nanotechnol. 9 348
[8] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)
[9] Takeda K, Shiraish K 1994 Phys. Rev. B 50 14916
[10] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
[11] Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[12] Cahangirov S, Topsakal M, Aktrk E, Şhin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804
[13] Lebgue S, Eriksson O 2009 Phys. Rev. B 79 115409
[14] Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111
[15] Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106
[16] Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802
[17] Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430
[18] Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227
[19] Roome N J, David Carey J 2014 ACS Appl. Mater. Interfaces 6 7743
[20] Nijamudheen A, Bhattacharjee R, Choudhury S, Datta A 2015 J. Phys. Chem. C 119 3802
[21] Trivedi S, Srivastava A, Kurchania R 2014 J. Comput. Theor. Nanosci. 11 1
[22] Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, L J 2014 Physica E 59 60
[23] Zhuang J, Gao N, Li Z, Xu X, Wang J, Zhao J, Dou S X, Du Y 2017 ACS Nano 11 3553
[24] Li S, Zhang C, Ji W, Li F, Wang P, Hu S, Yan S, Liu Y 2014 Phys. Chem. Chem. Phys. 16 15968
[25] Si C, Liu J, Xu Y, Wu J, Gu B L, Duan W 2014 Phys. Rev. B 89 115429
[26] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113
[27] Xia W, Hu W, Li Z, Yang J L 2014 Phys. Chem. Chem. Phys. 16 22495
[28] Kaloni T P 2014 J. Phys. Chem. C 118 25200
[29] Kaneko S, Tsuchiya H, Kamakura Y, Mori N, Matsuto O 2014 Appl. Phys. Express 7 035102
[30] Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 81 195120
[31] Pang Q, Zhang Y, Zhang J M, Ji V, Xu K W 2011 Nanoscale 3 4330
[32] Kaloni T P, Schwingenschlgla U 2013 J. Appl. Phys. 114 184307
[33] Ma Y, Dai Y, Niu C, Huang B 2012 J. Mater. Chem. 22 12587
[34] Wu S C, Shan G, Yan B 2014 Phys. Rev. Lett. 113 256401
[35] Zlyomi V, Wallbank J R, Fal'ko V I 2014 2D Mater. 1 011005
[36] Yu W, Yan J, Gao S 2015 Nanoscale Res. Lett. 10 351
[37] Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389
[38] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507
[39] Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501
[40] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[41] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685
[42] Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414
[43] Li L, Zhao M W 2013 Phys. Chem. Chem. Phys. 15 16853
[44] Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S, Gao H J 2014 Adv. Mater. 26 4820
[45] Dvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002
[46] Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510
[47] Fukaya Y, Matsuda I, Feng B, Mochizuki I, Hyodo T, Shamoto S 2016 2D Mater. 3 035019
[48] Zhang L, Bampoulis P, van Houselt A, Zandvliet H J W 2015 Appl. Phys. Lett. 107 111605
[49] Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B, Zandvliet H J W 2014 J. Phys. Condens. Matter 26 442001
[50] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801
[51] Guo Z, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435
[52] Wang Y, Li J, Xiong J, Pan Y, Ye M, Guo Y, Zhang H, Quhe R, Lu J 2016 Phys. Chem. Chem. Phys. 18 19451
[53] Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, Carbone C 2014 Phys. Rev. B 89 201416
[54] Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409
[55] Qin Z H, Pan J B, Lu S Z, Shao Y, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046
[56] Dvila M E, Le Lay G 2016 Sci. Rep. 6 20714
[57] Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408
[58] Li X, Wu S, Zhou S, Zhu Z 2014 Nano. Res. Lett. 9 110
[59] Persichetti L, Jardali F, Vach H, Sgarlata A, Berbezier I, De Crescenzi M, Balzarotti A 2016 J. Phys. Chem. Lett. 7 3246
[60] Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804
[61] Katsnelson M I, Fasolino A 2013 Acc. Chem. Res. 46 97
[62] Zhang D, Lou W, Miao M, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402
Catalog
Metrics
- Abstract views: 11942
- PDF Downloads: 856
- Cited By: 0