搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电荷和热输运的石墨烯热电子器件性能优化

廖天军 杨智敏 林比宏

引用本文:
Citation:

基于电荷和热输运的石墨烯热电子器件性能优化

廖天军, 杨智敏, 林比宏

Performance optimization of graphene thermionicdevices based on charge and heat transport

Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong
PDF
HTML
导出引用
  • 科研人员近年来提出了石墨烯热电子能量转换器件(graphene thermionic energy converter, GTEC)的模型, 对其物理机理与参数优化展开了研究, 为高品位热能开发提供了新途径. 然而, 空间电荷积累和近场热辐射效应对GTEC能量转换性能的影响却鲜有报道. 本文结合热电子发射、朗缪尔空间电荷、非平衡态热力学和涨落电动力学等理论, 考虑热电子输运、近场热辐射输运、牛顿换热的相互作用对GETC的影响, 进而构建完善的物理模型. 首先, 分析极板温度恒定时的电流密度、阴极板附加势垒、功率密度、转换效率、热流对电压和真空间隙的依赖特性, 结果表明真空间隙对功率密度的影响显著, 而对效率的影响较小, 可在不同的电压处获得最高功率密度和效率. 其次, 分析了极板温度受能量平衡约束条件下, 功率密度与效率随电压的变化情况, 研究发现: 相比于恒温模型, 牛顿换热对功率密度的影响显著, 而对效率的影响较小; 在最优功率密度时的阳极板温度高于环境温度, 而最优效率时的阳极板温度趋于环境温度; 折衷考虑功率密度和效率, 确定了电压、真空间隙和阳极板温度的优化区间. 本文所获结果可为实际器件的研制提供理论支撑.
    In recent years, researchers have proposed a model of graphene thermionic energy converter (GTEC) for the utilization of high-grade thermal energy, which is used to extensively study the physical mechanism and parametric optimization. However, the influences of space charge accumulation and near-field radiative effects on the GTEC’s energy conversion performance are rarely reported. In the present work, the theories of thermionic emission, Langmuir space charge, non-equilibrium thermodynamics, and fluctuating electrodynamics are used to construct an improved model, in which the coupling effects of thermionic transport, near-field radiative heat transfer, and Newton heat transfer are considered. Firstly, the dependence of additional potential barrier, current density, power density, efficiency, and heat flows on the voltage and the vacuum gap are analyzed by neglecting the Newton heat transfer. The results show that the vacuum gap has a significant influence on the power density, while it has a negligible effect on the efficiency, the optimal power density and efficiency can be obtained at two different voltages. Secondly, the variations of power density and efficiency with voltage are analyzed on condition that the electrodes’ temperatures are restricted by the energy balance equation. It is found that Newton heat transfer has a significant influence on the power density, while it has a negligible effect on the conversion efficiency; the anode’s temperature at the optimal power density is higher than the ambient temperature, and the temperature at the optimal efficiency is close to the ambient temperature; the optimal regions of voltage, vacuum gap, and anode’s temperature are determined by considering the trade-off between power density and efficiency. The results obtained in this work can provide a theoretical basis for the development of practical devices.
      通信作者: 杨智敏, yzm@yau.edu.cn ; 林比宏, bhlin@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004327), 重庆市科技局自然科学基金面上项目(批准号: cstc2020jcyj-msxmX0001), 重庆市教委科学技术研究项目(批准号: KJQN201901144)和重庆理工大学科研启动项目(批准号: 2019ZD22)资助的课题.
      Corresponding author: Yang Zhi-Min, yzm@yau.edu.cn ; Lin Bi-Hong, bhlin@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004327), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2020jcyj-msxmX0001), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201901144), and the Scientific Research Foundation of Chongqing University of Technology, China (Grant No. 2019ZD22).
    [1]

    吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军 2015 64 096102Google Scholar

    Wu X, Zhang D, Cai H, Zhou Y, Ni J, Zhang J 2015 Acta Phys. Sin. 64 096102Google Scholar

    [2]

    于海童, 刘东, 杨震, 段远源 2018 67 024209Google Scholar

    Yu H, Liu, Yang Z 2018 Acta Phys. Sin. 67 024209Google Scholar

    [3]

    廖天军, 吕贻祥 2020 69 057202Google Scholar

    Liao T, Lü Y, 2020 Acta Phys. Sin. 69 057202Google Scholar

    [4]

    Elahi A N M T, Devon J, Mohammad G, Keunhan P 2021 Sol. Energy Mater. Sol. Cells 226 111067Google Scholar

    [5]

    Liao T, Chen X, Lin B, Chen J 2016 Appl. Phys. Lett. 108 033901Google Scholar

    [6]

    Chen L, Ding Z, Zhou J, Wang W, Sun F. 2017 Eur. Phys. J. Plus 132 293Google Scholar

    [7]

    Liao T 2019 IEEE Electron Device Lett. 40 115Google Scholar

    [8]

    Datas A, Martí A 2017 Sol. Energy Mater. Sol. Cells 161 285Google Scholar

    [9]

    Deng Y, Qiu B, Lu K, et al. 2020 Appl. Therm. Eng. 173 115237Google Scholar

    [10]

    Liao T, Dai Y, Cheng C, Dai Y, Cheng C, Ni M 2020 J. Power Sources 478 228797Google Scholar

    [11]

    Chen S, Zhang H, Wang F, He M, Zhao J, Zhang C, Yuan J 2021 Int. J. Hydrogen Energy 46 22062Google Scholar

    [12]

    Post A D, King B V, Kisi E H 2017 Appl. Therm. Eng. 117 245Google Scholar

    [13]

    Zhang X, Ang Y S, Du J Y, Chen J, Ang L K 2020 J. Clean. Prod. 242 118444Google Scholar

    [14]

    Liang S J, Ang L K 2015 Phys. Rev. Appl. 3 014002

    [15]

    Misra S, Kahaly M U, Mishra S K 2017 J. Appl. Phys. 121 065102Google Scholar

    [16]

    Mishra S K, Kahaly M U, Misra S 2017 In. J. Thermal Sci. 121 358Google Scholar

    [17]

    Yang Z, Peng W, Li W, Chen X, Chen J 2018 J. Appl. Phys. 124 154501Google Scholar

    [18]

    廖天军, 林比宏, 王宇珲 2019 68 187901Google Scholar

    Liao T, Lin B, Wang Y 2019 Acta Phys. Sin. 68 187901Google Scholar

    [19]

    Hu C, Liang T, Chen X, Chen J 2021 Appl. Phys. Lett. 118 083901Google Scholar

    [20]

    Freitag M, Chiu H Y, Steiner M, Perebeinos V, Avouris P 2010 Nature Nanotech. 5 497Google Scholar

    [21]

    Jensen D, Elahi A N M T, Ghashami M, Keunhan P 2021 Phys. Rev. Appl. 15 024062Google Scholar

    [22]

    Smith J R, Bibro G L, Nemanich R J 2007 Phys. Rev. B 76 245327Google Scholar

    [23]

    Liang S J, Liu B, Hu W, Zhou K, Ang L K 2017 Sci. Rep. 7 46211Google Scholar

    [24]

    杜玮, 尹格, 马云贵 2020 69 204203Google Scholar

    Du W, Yin G, Ma Y 2020 Acta Phys. Sin. 69 204203Google Scholar

    [25]

    Messina R, Ben-Abdallah P 2013 Sci. Rep. 3 1383Google Scholar

    [26]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. lett. 99 016803Google Scholar

    [27]

    Su S, Zhang H, Chen X, Kang J, Chen J 2013 Sol. Energy Mater. Sol. Cells 117 219Google Scholar

    [28]

    廖天军, 陈渝, 杨智敏 2021 中国科学: 技术科学 51 46Google Scholar

    Liao T, Chen Y, Yang Z 2021 Sci. Sin. Tech. 51 46Google Scholar

    [29]

    Olawole O C, De D K 2018 J. Photon. Energy 8 018001

    [30]

    Liao T, Lin J, Tao C, Lin B 2020 Renew. Energy 162 1715Google Scholar

    [31]

    禹忠, 党忠, 柯熙政, 崔真 2016 65 248103Google Scholar

    Yu Z, Dang Z, Ke X, Cui Z 2016 Acta Phys. Sin. 65 248103Google Scholar

    [32]

    Jiang Y, Sun Y Y, Chen M, Wang Y, Li Z, Song C, He K, Wang L, Chen X, Xue Q, Ma X, Zhang S B 2012 Phys. Rev. Lett. 108 066809Google Scholar

    [33]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [34]

    杜一帅, 康维, 郑瑞伦 2017 66 014701Google Scholar

    Du Y, Kang W, Zheng R 2017 Acta Phys. Sin. 66 014701Google Scholar

  • 图 1  GTEC的结构和能带示意图 (a)结构; (b)能带

    Fig. 1.  The structure and band diagrams of the GTEC: (a) Structure; (b) band

    图 2  三个不同真空间隙条件下, GTEC的净电流密度$ J $与阴极板势垒高度$ {\phi _{{\text{M1}}}} $、功率密度$ P $与转换效率$ \eta $、热流$ {q_1} $$ {q_2} $, 以及近场辐射热流与阴极板热流的比值$ {{{q_{{\text{NF}}}}} \mathord{\left/ {\vphantom {{{q_{{\text{NF}}}}} {{q_{\text{H}}}}}} \right. } {{q_{\text{H}}}}} $随电压$ V $的变化关系曲线 (a)$ J $$ {\phi _{{\text{M1}}}} $; (b)$ P $$ \eta $; (c)$ {q_1} $$ {q_2} $; (d)$ {{{q_{{\text{NF}}}}} \mathord{\left/ {\vphantom {{{q_{{\text{NF}}}}} {{q_{\text{H}}}}}} \right. } {{q_{\text{H}}}}} $

    Fig. 2.  The curves net electrical current density $ J $ and cathode’s additional barrier $ {\phi _{{\text{M1}}}} $, power density $ P $ and efficiency $ \eta $, heat flow rates $ {q_1} $ and $ {q_2} $, and the ratio of $ {q_{{\text{NF}}}} $ to $ {q_{\text{H}}} $ varying with the voltage $ V $ for given three values of $ d $: (a)$ J $and$ {\phi _{{\text{M1}}}} $; (b)$ P $and$ \eta $; (c)$ {q_1} $and$ {q_2} $; (d)$ {{{q_{{\text{NF}}}}} \mathord{\left/ {\vphantom {{{q_{{\text{NF}}}}} {{q_{\text{H}}}}}} \right. } {{q_{\text{H}}}}} $.

    图 3  极板温度$ {T_1} $$ {T_{\text{2}}} $和功率密度$ P $与效率$ \eta $随电压$ V $的变化曲线, 其中$d = 1.5\, {\text{μm}}$(a)$ {T_1} $$ {T_{\text{2}}} $; (b)$ P $$ \eta $

    Fig. 3.  The curves cathode’s operating temperature $ {T_1} $ and anode’s operating temperature $ {T_{\text{2}}} $ and power density $ P $ and efficiency $ \eta $ varying with the voltage $ V $, where $d = 1.5\, {\text{μm}}$: (a)$ {T_1} $and $ {T_{\text{2}}} $; (b)$ P $and $ \eta $.

    图 4  (a)最高功率密度$ {P_{\max }} $与效率$ {\eta _{\max }} $和(b)优化电压$ {V_P} $$ {V_\eta } $以及优化比值$ {\left( {{{{q_{{\text{NF}}}}} \mathord{\left/ {\vphantom {{{q_{{\text{NF}}}}} {{q_{\text{H}}}}}} \right. } {{q_{\text{H}}}}}} \right)_P} $$ {\left( {{{{q_{{\text{NF}}}}} \mathord{\left/ {\vphantom {{{q_{{\text{NF}}}}} {{q_{\text{H}}}}}} \right. } {{q_{\text{H}}}}}} \right)_\eta } $随真空间隙$ d $的变化曲线

    Fig. 4.  The curves (a) the maximum power density $ {P_{\max }} $ and efficiency $ {\eta _{\max }} $ and (b) the optimum operating voltages $ {V_P} $ and $ {V_\eta } $, and the optimum ratios $ {\left( {{{{q_{{\text{NF}}}}} \mathord{\left/ {\vphantom {{{q_{{\text{NF}}}}} {{q_{\text{H}}}}}} \right. } {{q_{\text{H}}}}}} \right)_P} $ and $ {\left( {{{{q_{{\text{NF}}}}} \mathord{\left/ {\vphantom {{{q_{{\text{NF}}}}} {{q_{\text{H}}}}}} \right. } {{q_{\text{H}}}}}} \right)_\eta } $ varying with the vacuum gap $ d $.

    Baidu
  • [1]

    吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军 2015 64 096102Google Scholar

    Wu X, Zhang D, Cai H, Zhou Y, Ni J, Zhang J 2015 Acta Phys. Sin. 64 096102Google Scholar

    [2]

    于海童, 刘东, 杨震, 段远源 2018 67 024209Google Scholar

    Yu H, Liu, Yang Z 2018 Acta Phys. Sin. 67 024209Google Scholar

    [3]

    廖天军, 吕贻祥 2020 69 057202Google Scholar

    Liao T, Lü Y, 2020 Acta Phys. Sin. 69 057202Google Scholar

    [4]

    Elahi A N M T, Devon J, Mohammad G, Keunhan P 2021 Sol. Energy Mater. Sol. Cells 226 111067Google Scholar

    [5]

    Liao T, Chen X, Lin B, Chen J 2016 Appl. Phys. Lett. 108 033901Google Scholar

    [6]

    Chen L, Ding Z, Zhou J, Wang W, Sun F. 2017 Eur. Phys. J. Plus 132 293Google Scholar

    [7]

    Liao T 2019 IEEE Electron Device Lett. 40 115Google Scholar

    [8]

    Datas A, Martí A 2017 Sol. Energy Mater. Sol. Cells 161 285Google Scholar

    [9]

    Deng Y, Qiu B, Lu K, et al. 2020 Appl. Therm. Eng. 173 115237Google Scholar

    [10]

    Liao T, Dai Y, Cheng C, Dai Y, Cheng C, Ni M 2020 J. Power Sources 478 228797Google Scholar

    [11]

    Chen S, Zhang H, Wang F, He M, Zhao J, Zhang C, Yuan J 2021 Int. J. Hydrogen Energy 46 22062Google Scholar

    [12]

    Post A D, King B V, Kisi E H 2017 Appl. Therm. Eng. 117 245Google Scholar

    [13]

    Zhang X, Ang Y S, Du J Y, Chen J, Ang L K 2020 J. Clean. Prod. 242 118444Google Scholar

    [14]

    Liang S J, Ang L K 2015 Phys. Rev. Appl. 3 014002

    [15]

    Misra S, Kahaly M U, Mishra S K 2017 J. Appl. Phys. 121 065102Google Scholar

    [16]

    Mishra S K, Kahaly M U, Misra S 2017 In. J. Thermal Sci. 121 358Google Scholar

    [17]

    Yang Z, Peng W, Li W, Chen X, Chen J 2018 J. Appl. Phys. 124 154501Google Scholar

    [18]

    廖天军, 林比宏, 王宇珲 2019 68 187901Google Scholar

    Liao T, Lin B, Wang Y 2019 Acta Phys. Sin. 68 187901Google Scholar

    [19]

    Hu C, Liang T, Chen X, Chen J 2021 Appl. Phys. Lett. 118 083901Google Scholar

    [20]

    Freitag M, Chiu H Y, Steiner M, Perebeinos V, Avouris P 2010 Nature Nanotech. 5 497Google Scholar

    [21]

    Jensen D, Elahi A N M T, Ghashami M, Keunhan P 2021 Phys. Rev. Appl. 15 024062Google Scholar

    [22]

    Smith J R, Bibro G L, Nemanich R J 2007 Phys. Rev. B 76 245327Google Scholar

    [23]

    Liang S J, Liu B, Hu W, Zhou K, Ang L K 2017 Sci. Rep. 7 46211Google Scholar

    [24]

    杜玮, 尹格, 马云贵 2020 69 204203Google Scholar

    Du W, Yin G, Ma Y 2020 Acta Phys. Sin. 69 204203Google Scholar

    [25]

    Messina R, Ben-Abdallah P 2013 Sci. Rep. 3 1383Google Scholar

    [26]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. lett. 99 016803Google Scholar

    [27]

    Su S, Zhang H, Chen X, Kang J, Chen J 2013 Sol. Energy Mater. Sol. Cells 117 219Google Scholar

    [28]

    廖天军, 陈渝, 杨智敏 2021 中国科学: 技术科学 51 46Google Scholar

    Liao T, Chen Y, Yang Z 2021 Sci. Sin. Tech. 51 46Google Scholar

    [29]

    Olawole O C, De D K 2018 J. Photon. Energy 8 018001

    [30]

    Liao T, Lin J, Tao C, Lin B 2020 Renew. Energy 162 1715Google Scholar

    [31]

    禹忠, 党忠, 柯熙政, 崔真 2016 65 248103Google Scholar

    Yu Z, Dang Z, Ke X, Cui Z 2016 Acta Phys. Sin. 65 248103Google Scholar

    [32]

    Jiang Y, Sun Y Y, Chen M, Wang Y, Li Z, Song C, He K, Wang L, Chen X, Xue Q, Ma X, Zhang S B 2012 Phys. Rev. Lett. 108 066809Google Scholar

    [33]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [34]

    杜一帅, 康维, 郑瑞伦 2017 66 014701Google Scholar

    Du Y, Kang W, Zheng R 2017 Acta Phys. Sin. 66 014701Google Scholar

  • [1] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响.  , 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射.  , 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [4] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [5] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究.  , 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [6] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度.  , 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [7] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究.  , 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [8] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器.  , 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [9] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [10] 张婷婷, 成蒙, 杨蓉, 张广宇. 锯齿形石墨烯反点网络加工与输运性质研究.  , 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [11] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流.  , 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [12] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较.  , 2015, 64(8): 087102. doi: 10.7498/aps.64.087102
    [13] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [15] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应.  , 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [16] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态.  , 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [17] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质.  , 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [18] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究.  , 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [19] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究.  , 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [20] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
计量
  • 文章访问数:  4665
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-07-22
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回
Baidu
map