-
When energetic heavy ions are incident on negatively charged structure that collects and deposits ions, ion sputtering will occur. Metal wire is a structure commonly used for accelerating ions, the incidence of continuous high-throughput ions can cause surface loss of metal wire, affecting the service performance and lifespan of the metal wire. The SRIM software commonly used for calculating sputtering yield cannot consider the multi-body interaction problem contained in the alloy crystal structure. So, there is a significant error in calculating the sputtering yield of high-energy ions incident on alloy target. Based on the molecular dynamics method and Langevin temperature control model, the calculation model of ion sputtering parameters of energetic metal ions incident on alloy target is established in this work. The model is used to calculate the sputtering yield under the conditions of intact surface lattice of the target material and long-term incident surface lattice damage. The damages to the cathode metal wire under different incident ion fluences are further calculated, and the cross-sectional characterization of the metal wire is carried under typical working condition. The results show that the discrepancy between the experimental value and the theoretical value is less than 10%, which verifies the accuracy and applicability of the theoretical model. Based on this model, the search direction for sputtering resistant materials is proposed, meanwhile, a theoretical optimization is carried out to improve the service life of metal wire, and a method of using Ni-Ti alloy to improve the service life of metal wires is proposed, which is of great significance for predicting the service life of the metal wire under different conditions.
-
Keywords:
- ion sputtering /
- molecular dynamics /
- alloy target /
- service life
[1] 田民波, 崔福斋 1987 物理 17 177
Google Scholar
Tian M B, Cui F Z 1987 Physics 17 177
Google Scholar
[2] 张莱, 张竹林 2006 安徽理工大学学报 26 69
Google Scholar
Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of Sci. and Tech. 26 69
Google Scholar
[3] 李体军, 崔岁寒, 刘亮亮 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 70 045202
Google Scholar
Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202
Google Scholar
[4] 陈畅子, 马东林, 李延涛, 冷永祥 2021 70 180701
Google Scholar
Chen C Z, Ma D L, Li Y T, Leng Y X 2021 Acta Phys. Sin. 70 180701
Google Scholar
[5] 朱红莲, 王德武 2022 51 1338
Google Scholar
Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338
Google Scholar
[6] 谢国锋 2008 57 1784
Google Scholar
Xie G F 2008 Acta Phys. Sin. 57 1784
Google Scholar
[7] Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl Instrum. Meth. B 268 1818
Google Scholar
[8] Sigmund P 1969 Phys. Rev. 184 383
Google Scholar
[9] 邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 40 659
Google Scholar
Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659
Google Scholar
[10] Mahne N, Cekada M, Panjan M 2022 Coatings 12 1541
Google Scholar
[11] 樊康旗, 贾建援 2005 微纳电子技术 42 133
Google Scholar
Fan K Q, Jia J Y 2005 Micronanoelectr. Tech. 42 133
Google Scholar
[12] Lu H F, Zhang C, Zhang Q Y 2003 Nucl. Instrum. Meth. B 206 22
Google Scholar
[13] Pastewka L, Salzer R, Graff A 2009 Nucl. Instrum. Meth. B 267 3072
Google Scholar
[14] Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828
Google Scholar
[15] Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695
Google Scholar
[16] Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Mate. 6 075402
Google Scholar
[17] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[18] Tran H, Chew H B 2023 Carbon 205 180
Google Scholar
[19] 颜超, 段军红, 何兴道 2011 60 088301
Google Scholar
Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301
Google Scholar
[20] Nosé S 1984 J. Chem. Phys. 81 511
Google Scholar
[21] Slavinskaya N A 1998 Matem. Mod. 34 3
Google Scholar
[22] Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251
Google Scholar
[23] Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122–156
[24] 颜超, 黄莉莉, 何兴道 2014 63 126801
Google Scholar
Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801
Google Scholar
-
表 1 金属丝寿命计算入射条件
Table 1. Calculation conditions for the life of metal wires.
入射条件 初始值 入射元素 铯 入射能量/keV 9 入射方向与金属丝平面夹角/(°) 10 入射离子通量/(s–1·cm–2) 2.1×1015 靶材 625合金 金属丝初始直径/mm 0.5 -
[1] 田民波, 崔福斋 1987 物理 17 177
Google Scholar
Tian M B, Cui F Z 1987 Physics 17 177
Google Scholar
[2] 张莱, 张竹林 2006 安徽理工大学学报 26 69
Google Scholar
Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of Sci. and Tech. 26 69
Google Scholar
[3] 李体军, 崔岁寒, 刘亮亮 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 70 045202
Google Scholar
Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202
Google Scholar
[4] 陈畅子, 马东林, 李延涛, 冷永祥 2021 70 180701
Google Scholar
Chen C Z, Ma D L, Li Y T, Leng Y X 2021 Acta Phys. Sin. 70 180701
Google Scholar
[5] 朱红莲, 王德武 2022 51 1338
Google Scholar
Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338
Google Scholar
[6] 谢国锋 2008 57 1784
Google Scholar
Xie G F 2008 Acta Phys. Sin. 57 1784
Google Scholar
[7] Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl Instrum. Meth. B 268 1818
Google Scholar
[8] Sigmund P 1969 Phys. Rev. 184 383
Google Scholar
[9] 邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 40 659
Google Scholar
Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659
Google Scholar
[10] Mahne N, Cekada M, Panjan M 2022 Coatings 12 1541
Google Scholar
[11] 樊康旗, 贾建援 2005 微纳电子技术 42 133
Google Scholar
Fan K Q, Jia J Y 2005 Micronanoelectr. Tech. 42 133
Google Scholar
[12] Lu H F, Zhang C, Zhang Q Y 2003 Nucl. Instrum. Meth. B 206 22
Google Scholar
[13] Pastewka L, Salzer R, Graff A 2009 Nucl. Instrum. Meth. B 267 3072
Google Scholar
[14] Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828
Google Scholar
[15] Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695
Google Scholar
[16] Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Mate. 6 075402
Google Scholar
[17] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[18] Tran H, Chew H B 2023 Carbon 205 180
Google Scholar
[19] 颜超, 段军红, 何兴道 2011 60 088301
Google Scholar
Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301
Google Scholar
[20] Nosé S 1984 J. Chem. Phys. 81 511
Google Scholar
[21] Slavinskaya N A 1998 Matem. Mod. 34 3
Google Scholar
[22] Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251
Google Scholar
[23] Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122–156
[24] 颜超, 黄莉莉, 何兴道 2014 63 126801
Google Scholar
Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801
Google Scholar
Catalog
Metrics
- Abstract views: 638
- PDF Downloads: 28
- Cited By: 0