Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys

Wen Peng Tao Gang

Citation:

Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys

Wen Peng, Tao Gang
PDF
HTML
Get Citation
  • High-entropy alloys have broad application prospects in aviation, aerospace, military and other fields due to their excellent mechanical properties. Temperature is an important external factor affecting the shock response of high-entropy alloys. In this paper, we investigate the effects of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys by using molecular dynamics method. The effects of temperature on the atomic volume and the radial distribution function of CoCrFeMnNi high-entropy alloy are studied. Then, the piston method is used to generate shock waves in the sample to study the shock response of CoCrFeMnNi high-entropy alloy. We observe the evolution of atomic-scale defects during the shock compression by the polyhedral template matching method. The results show that the shock pressure, the shock wave propagation velocity, and the rising of shock-induced temperature all decrease with the initial temperature increasing. For example, when piston velocity Up = 1.5 km/s, the shock pressure at an initial temperature of 1000 K decreases by 6.7% in comparison with that at 1 K. Moreover, the shock Hugoniot elastic limit decreases linearly with the increase of temperature. The Hugoniot Up-Us curve of CoCrFeMnNi HEA in the plastic stage can be linearly fitted by the formula Us = c0 + sUp, where c0 decreases with temperature increasing. As the shock intensity increases, the CoCrFeMnNi high-entropy alloy undergoes complex plastic deformation, including dislocation slip, phase transformation, deformation twinning, and shock-induced amorphization. At relatively high initial temperature, disordered clusters appear inside CoCrFeMnNi HEA, which together with the BCC (body-centered cubic) structure transformed from FCC (face-centered cubic) and disordered structure are significant dislocation nucleation sources. Compared with other elements, Mn element accounts for the largest proportion (25.4%) in disordered cluster. Owing to the large atomic volume and potential energy, large lattice distortion and local stress occur around the Mn-rich element, which makes a dominant contribution to shock-induced plastic deformation. At high temperatures, the contribution of Fe element to plastic deformation is as important as that of Mn element. The research results are conducive to understanding the shock-induced plasticity and deformation mechanisms of CoCrFeMnNi high-entropy alloys in depth.
      Corresponding author: Wen Peng, wenpeng@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11802139).
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar

    [3]

    Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater. Sci. 102 296Google Scholar

    [4]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [5]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [6]

    Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021 Prog. Mater. Sci. 118 100777Google Scholar

    [7]

    王睿鑫, 唐宇, 李顺, 白书欣 2021 材料导报 35 17001Google Scholar

    Wang R X, Tang Y, Li S, Bai S X 2021 Mater. Rep. 35 17001Google Scholar

    [8]

    李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 333Google Scholar

    Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. Appl. Mech. 52 333Google Scholar

    [9]

    陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷 2021 爆炸与冲击 41 1Google Scholar

    Chen H H, Zhang X F, Liu C, Lin K F, Xiong W 2021 Explo. Shock Waves 41 1Google Scholar

    [10]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [11]

    Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2016 J. Mater. Eng. Perform. 25 451Google Scholar

    [12]

    Kumar N, Ying Q, Nie X, Mishra R S, Tang Z, Liaw P K, Brennan R E, Doherty K J, Cho K C 2015 Mater. Des. 86 598Google Scholar

    [13]

    Qiao Y, Chen Y, Cao F H, Wang H Y, Dai L H 2021 Int. J. Impact Eng. 158 104008Google Scholar

    [14]

    Jiang Z J, He J Y, Wang H Y, Zhang H S, Lu Z P, Dai L H 2016 Mater. Res. Lett. 4 226Google Scholar

    [15]

    Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar

    [16]

    Chen H, Zhang X, Xiong W, Liu C, Wei H, Wang H, Dai L 2020 Chin. J. Theor. Appl. Mech. 52 1443Google Scholar

    [17]

    Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, Bai S 2017 Mater. Des. 133 435Google Scholar

    [18]

    Zhang T W, Jiao Z M, Wang Z H, Qiao J W 2017 Scr. Mater. 136 15Google Scholar

    [19]

    Wen P, Tao G, Spearot D E, Phillpot S R 2022 J. Appl. Phys. 131 051101Google Scholar

    [20]

    Zhao L, Zong H, Ding X, Lookman T 2021 Acta Mater. 209 116801Google Scholar

    [21]

    Xie Z, Jian W R, Xu S, Beyerlein I J, Zhang X, Wang Z, Yao X 2021 Acta Mater. 221 117380Google Scholar

    [22]

    Jian W R, Xie Z, Xu S, Yao X, Beyerlein I J 2022 Scr. Mater. 209 114379Google Scholar

    [23]

    Thürmer D, Gunkelmann N 2022 J. Appl. Phys. 131 065902Google Scholar

    [24]

    Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 J. Alloys Compd. 895 162567Google Scholar

    [25]

    Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D 2022 Int. J. Mech. Sci. 226 107373Google Scholar

    [26]

    Singh S K, Parashar A 2022 Comput. Mater. Sci. 209 111402Google Scholar

    [27]

    Huang S, Li W, Lu S, Tian F, Shen J, Holmström E, Vitos L 2015 Scr. Mater. 108 44Google Scholar

    [28]

    Fu J X, Cao C M, Tong W, Hao Y X, Peng L M 2017 Mater. Sci. Eng. , A 690 418Google Scholar

    [29]

    Kawamura M, Asakura M, Okamoto N L, Kishida K, Inui H, George E P 2021 Acta Mater. 203 116454Google Scholar

    [30]

    Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E P 2015 J. Alloys Compd. 623 348Google Scholar

    [31]

    Laplanche G, Gadaud P, Bärsch C, Demtröder K, Reinhart C, Schreuer J, George E P 2018 J. Alloys Compd. 746 244Google Scholar

    [32]

    Haglund A, Koehler M, Catoor D, George E P, Keppens V 2015 Intermetallics 58 62Google Scholar

    [33]

    Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 npj Comput. Mater. 4 1Google Scholar

    [34]

    Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar

    [35]

    Alabd Alhafez I, Ruestes C J, Bringa E M, Urbassek H M 2019 J. Alloys Compd. 803 618Google Scholar

    [36]

    Goede A, Preissner R, Frömmel C 1997 J. Comput. Chem. 18 1113Google Scholar

    [37]

    Holian B L, Lomdahl P S 1998 Science 280 2085Google Scholar

    [38]

    Hahn E N, Germann T C, Ravelo R, Hammerberg J E, Meyers M A 2017 Acta Mater. 126 313Google Scholar

    [39]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [40]

    Larsen P M, Schmidt S, Schiotz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007Google Scholar

    [41]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 15012Google Scholar

    [42]

    Luo G, Huang S, Hu J, Zhu Y, Wang J, Yang G, Zhang R, Sun Y, Zhang J, Shen Q 2022 AIP Adv. 12 055123Google Scholar

    [43]

    Tian X, Cui J, Ma K, Xiang M 2020 Int. J. Heat Mass Transfer 158 120013Google Scholar

    [44]

    Wang Y, Zeng X, Yang X, Xu T 2022 Comput. Mater. Sci. 201 110870Google Scholar

    [45]

    Wen P, Demaske B, Spearot D E, Phillpot S R, Tao G 2021 J. Appl. Phys. 129 165103Google Scholar

    [46]

    Sharma S M, Turneaure S J, Winey J M, Gupta Y M 2020 Phys. Rev. B 102 020103Google Scholar

  • 图 1  (a) 小尺寸CoCrFeMnNi高熵合金模型; (b) 大尺寸CoCrFeMnNi高熵合金冲击压缩过程图

    Figure 1.  CoCrFeMnNi HEA model: (a) Small size; (b) big size for shock compression.

    图 2  温度对CoCrFeMnNi 高熵合金的影响 (a) 径向分布函数; (b) 原子体积

    Figure 2.  Effect of temperature on (a) RDFs and (b) atomic volume of CoCrFeMnNi HEA.

    图 3  初始温度为1 K时, 不同Up下沿z方向上的 (a) Pzz和(b) Psh

    Figure 3.  (a) Pzz and (b) Psh along the z-direction for different Up at an initial temperature of 1 K.

    图 4  Up = 1.5 km/s时, 初始温度对 (a) 冲击压力Pzz、 (b) 剪切应力Psh和 (c) 温度的影响

    Figure 4.  Effects of initial temperature on (a) shock pressure, (b) shear stress and (c) temperature when Up = 1.5 km/s.

    图 5  不同初始温度下的 (a) Up-Us曲线, 以及(b) 拟合参数c0s

    Figure 5.  (a) Shock Hugoniot Up-Us curves and (b) fitting parameters c0 and s at different initial temperatures.

    图 6  (a) 流动应力Pflow随冲击压力Pzz的变化; (b) PHEL随温度的变化

    Figure 6.  (a) Flow stress Pflow as a function of shock pressure Pzz; (b) PHEL as a function of temperature.

    图 7  不同初始温度下的冲击温升曲线

    Figure 7.  Shock-induced temperature rise at different initial temperatures.

    图 8  典型Up时不同初始温度下的缺陷结构特征

    Figure 8.  Defect structure characteristics at different initial temperatures for typical Up.

    图 9  典型Up时不同初始温度下的结构含量随时间的变化 (a) Up = 0.65 km/s, T = 1 K; (b) Up = 1.0 km/s, T = 1 K; (c) Up = 1.5 km/s, T = 1 K; (d) Up = 0.65 km/s, T = 1000 K; (e) Up = 1.0 km/s, T = 1000 K; (f) Up = 1.5 km/s, T = 1000 K

    Figure 9.  Atomic fraction of FCC, BCC, HCP and disordered structures as a function of the shocked time at different initial temperatures for typical Up: (a) Up = 0.65 km/s, T = 1 K; (b) Up = 1.0 km/s, T = 1 K; (c) Up = 1.5 km/s, T = 1 K; (d) Up = 0.65 km/s, T = 1000 K; (e) Up = 1.0 km/s, T = 1000 K; (f) Up = 1.5 km/s, T = 1000 K.

    图 10  Up = 1.0 km/s时, 初始温度为 (a) 1和 (b) 1000 K时不同元素在不同结构中的占比

    Figure 10.  When Up is 1.0 km/s, proportions of Co, Ni, Cr, Fe and Mn with FCC, BCC, HCP and disordered structures as a function of the shocked time at initial temperatures of (a) 1 and (b) 1000 K.

    图 11  不同原子对之间的势能和原子间距之间的关系[33]

    Figure 11.  Potential energy as a function of interatomic spacing[33].

    图 12  不同冲击压力和温度下, CoCrFeMnNi 高熵合金的变形机制

    Figure 12.  Deformation mechanisms of CoCrFeMnNi HEA under different shock pressures and temperatures.

    图 13  不同变形机制的演化示意图 (a) 位错滑移; (b)相变; (c)变形孪晶; (d)非晶化

    Figure 13.  Schematic diagram of different deformation mechanisms: (a) Dislocation slip; (b) phase transition; (c) deformation twinning; (d) amorphization.

    Baidu
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar

    [3]

    Li Z, Zhao S, Ritchie R O, Meyers M A 2019 Prog. Mater. Sci. 102 296Google Scholar

    [4]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [5]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [6]

    Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021 Prog. Mater. Sci. 118 100777Google Scholar

    [7]

    王睿鑫, 唐宇, 李顺, 白书欣 2021 材料导报 35 17001Google Scholar

    Wang R X, Tang Y, Li S, Bai S X 2021 Mater. Rep. 35 17001Google Scholar

    [8]

    李建国, 黄瑞瑞, 张倩, 李晓雁 2020 力学学报 52 333Google Scholar

    Li J G, Huang R R, Zhang Q, Li X Y 2020 Chin. J. Theor. Appl. Mech. 52 333Google Scholar

    [9]

    陈海华, 张先锋, 刘闯, 林琨富, 熊玮, 谈梦婷 2021 爆炸与冲击 41 1Google Scholar

    Chen H H, Zhang X F, Liu C, Lin K F, Xiong W 2021 Explo. Shock Waves 41 1Google Scholar

    [10]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [11]

    Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2016 J. Mater. Eng. Perform. 25 451Google Scholar

    [12]

    Kumar N, Ying Q, Nie X, Mishra R S, Tang Z, Liaw P K, Brennan R E, Doherty K J, Cho K C 2015 Mater. Des. 86 598Google Scholar

    [13]

    Qiao Y, Chen Y, Cao F H, Wang H Y, Dai L H 2021 Int. J. Impact Eng. 158 104008Google Scholar

    [14]

    Jiang Z J, He J Y, Wang H Y, Zhang H S, Lu Z P, Dai L H 2016 Mater. Res. Lett. 4 226Google Scholar

    [15]

    Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020 Acta Mater. 186 257Google Scholar

    [16]

    Chen H, Zhang X, Xiong W, Liu C, Wei H, Wang H, Dai L 2020 Chin. J. Theor. Appl. Mech. 52 1443Google Scholar

    [17]

    Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, Bai S 2017 Mater. Des. 133 435Google Scholar

    [18]

    Zhang T W, Jiao Z M, Wang Z H, Qiao J W 2017 Scr. Mater. 136 15Google Scholar

    [19]

    Wen P, Tao G, Spearot D E, Phillpot S R 2022 J. Appl. Phys. 131 051101Google Scholar

    [20]

    Zhao L, Zong H, Ding X, Lookman T 2021 Acta Mater. 209 116801Google Scholar

    [21]

    Xie Z, Jian W R, Xu S, Beyerlein I J, Zhang X, Wang Z, Yao X 2021 Acta Mater. 221 117380Google Scholar

    [22]

    Jian W R, Xie Z, Xu S, Yao X, Beyerlein I J 2022 Scr. Mater. 209 114379Google Scholar

    [23]

    Thürmer D, Gunkelmann N 2022 J. Appl. Phys. 131 065902Google Scholar

    [24]

    Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 J. Alloys Compd. 895 162567Google Scholar

    [25]

    Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D 2022 Int. J. Mech. Sci. 226 107373Google Scholar

    [26]

    Singh S K, Parashar A 2022 Comput. Mater. Sci. 209 111402Google Scholar

    [27]

    Huang S, Li W, Lu S, Tian F, Shen J, Holmström E, Vitos L 2015 Scr. Mater. 108 44Google Scholar

    [28]

    Fu J X, Cao C M, Tong W, Hao Y X, Peng L M 2017 Mater. Sci. Eng. , A 690 418Google Scholar

    [29]

    Kawamura M, Asakura M, Okamoto N L, Kishida K, Inui H, George E P 2021 Acta Mater. 203 116454Google Scholar

    [30]

    Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E P 2015 J. Alloys Compd. 623 348Google Scholar

    [31]

    Laplanche G, Gadaud P, Bärsch C, Demtröder K, Reinhart C, Schreuer J, George E P 2018 J. Alloys Compd. 746 244Google Scholar

    [32]

    Haglund A, Koehler M, Catoor D, George E P, Keppens V 2015 Intermetallics 58 62Google Scholar

    [33]

    Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 npj Comput. Mater. 4 1Google Scholar

    [34]

    Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast. 114 161Google Scholar

    [35]

    Alabd Alhafez I, Ruestes C J, Bringa E M, Urbassek H M 2019 J. Alloys Compd. 803 618Google Scholar

    [36]

    Goede A, Preissner R, Frömmel C 1997 J. Comput. Chem. 18 1113Google Scholar

    [37]

    Holian B L, Lomdahl P S 1998 Science 280 2085Google Scholar

    [38]

    Hahn E N, Germann T C, Ravelo R, Hammerberg J E, Meyers M A 2017 Acta Mater. 126 313Google Scholar

    [39]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [40]

    Larsen P M, Schmidt S, Schiotz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007Google Scholar

    [41]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 15012Google Scholar

    [42]

    Luo G, Huang S, Hu J, Zhu Y, Wang J, Yang G, Zhang R, Sun Y, Zhang J, Shen Q 2022 AIP Adv. 12 055123Google Scholar

    [43]

    Tian X, Cui J, Ma K, Xiang M 2020 Int. J. Heat Mass Transfer 158 120013Google Scholar

    [44]

    Wang Y, Zeng X, Yang X, Xu T 2022 Comput. Mater. Sci. 201 110870Google Scholar

    [45]

    Wen P, Demaske B, Spearot D E, Phillpot S R, Tao G 2021 J. Appl. Phys. 129 165103Google Scholar

    [46]

    Sharma S M, Turneaure S J, Winey J M, Gupta Y M 2020 Phys. Rev. B 102 020103Google Scholar

  • [1] Yu Xin-Xiu, Li Duo-Sheng, Ye Yin, Lang Wen-Chang, Liu Jun-Hong, Chen Jing-Song, Yu Shuang-Shuang. Molecular dynamics simulation of effect of nickel transition layer on deposition of carbon atoms and graphene growth on cemented carbide surfaces. Acta Physica Sinica, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [2] Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong. Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [3] Wen Peng,  Tao Gang. Molecular dynamics study of the effect of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [4] Zhou Ming-Jin, Hou Qing, Pan Rong-Jian, Wu Lu, Fu Bao-Qin. Molecular dynamics study of special quasirandom structure of Zr-Nb alloys. Acta Physica Sinica, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [5] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [6] Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng. Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Acta Physica Sinica, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [7] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [8] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [9] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [10] Wang Yun-Tian, Zeng Xiang-Guo, Yang Xin. Molecular dynamics simulation of effect of temperature on void nucleation and growth of single crystal iron at a high strain rate. Acta Physica Sinica, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [11] Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang. Shock plasticity design of brittle material. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [12] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. Shock response and evolution mechanism of brittle material containing micro-voids. Acta Physica Sinica, 2014, 63(24): 246102. doi: 10.7498/aps.63.246102
    [13] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [14] Guo Qiao-Neng, Cao Yi-Gang, Sun Qiang, Liu Zhong-Xia, Jia Yu, Huo Yu-Ping. Temperature dependence of fatigue properties of ultrathin copper films: molecular dynamics simulations. Acta Physica Sinica, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [15] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [17] Chen Min, Wang Jun, Hou Qing. Influence of helium on volume change and stability of titanium structure: An atomistic simulation. Acta Physica Sinica, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [18] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [20] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
Metrics
  • Abstract views:  5041
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2022
  • Accepted Date:  02 October 2022
  • Available Online:  06 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回
Baidu
map