搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC基底覆多层石墨烯力学强化性能分子动力学模拟

陈晶晶 赵洪坡 王葵 占慧敏 罗泽宇

引用本文:
Citation:

SiC基底覆多层石墨烯力学强化性能分子动力学模拟

陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇

Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene

Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu
PDF
HTML
导出引用
  • 微机电系统半导体SiC器件覆多层石墨烯的力学强化性能与塑性变形微观研究, 将对提升该器件耐久性服役寿命期和强韧化机制理解起到显著作用. 因此, 本文基于分子动力学法探讨了石墨烯堆垛类型(AA和AB堆垛)和极端使役温度对其接触力学性能(最大承载荷、硬度、杨氏模量、接触刚度)、微结构演化、接触质量、褶皱形貌、位错总长的影响, 解释了SiC基底覆多层石墨烯力学强化的原子尺度机制. 研究发现: 相同使役温度下, 随覆石墨烯层数增加, SiC基底微结构的棱柱形位错环演化中越早发生脆断; 石墨烯AB堆垛在最大压深时的C—C键断裂会导致石墨烯优异面内弹性变形丧失, 以致其最大承载性呈现断崖式下降. 研究表明: SiC基底覆三层石墨烯的力学强化性能是纯SiC的2倍, 该强化效应不受石墨烯堆垛类型影响, 其力学强化机制主要源于多层石墨烯受载加大会引起石墨烯面内褶皱增大, 从而增大界面接触刚度, 触发界面接触质量减小所致. 使役温度升高, 会激发原子振动频率增大, 诱导界面接触原子数增多, 以致界面接触质量增大, 而界面接触刚度随之减弱, 最终引起SiC基底覆多层石墨烯力学性能随温度升高呈近似直线下降. 此外, SiC基底的亚表层应力集中会诱导基底内的微结构产生滑移与演变; 基底覆石墨烯层数增加可有效减小基底亚表层的应力集中分布程度, 从而对基底起抗载保护作用.
    A large number of practices have shown that under the coupling influence of complex working conditions and frequent reciprocating contact, the surfaces of semiconductor devices in micro/nano electromechanical systems often produce adhesive wear, which is the essential reason resulting in short durability service life and declining contact mechanical properties for microelectronics semiconductor devices. However, graphene can significantly improve the interface properties of mechanical components and electronic components due to its excellent mechanical properties, such as high carrier concentration, good thermal conductivity, and low shear. Thus, the study of mechanical strengthening properties and plastic deformation of SiC material with covered multi-layer graphene in MEMS devices will play a significant role in improving the durability service life of MEMS device, and understanding its strengthening and toughening mechanism. Therefore, this paper studies and discusses the effects of stacking type and extreme service temperature with low and high levels on the contact mechanical properties (maximum load, hardness, Young modulus, contact stiffness), micro-structure evolution, contact mass, fold morphology, and total length of dislocation. The atomic-scale mechanism of enhanced mechanical properties of SiC material with multi-layer graphene is explained. The research shows that the damage to carbon-carbon bond at the maximum indentation depth will lead graphene to lose the excellent in-plane elastic deformation capability when the graphene stacking type is AB stacking, so that the maximum load-bearing capacity of the substrate covered by three layers of graphene will drop linearly. In addition, the mechanical property of SiC material coated with three graphene layers is twice that of pure SiC substrate, and the strengthening mechanism is mainly due to the increase of wrinkle caused by the increase of multilayer graphene loading, which causes the quality of contact between the SiC substrate and the virtual indenter to decrease, thus increasing the interface contact stiffness. The increase of the active temperature will trigger off the increase of the atomic vibration frequency, which will cause the number of interface contact atoms to increase greatly, and the interface contact stiffness will weaken, and finally lead the interface contact quality to improve, This is because the mechanical properties of SiC substrate coated with multilayer graphene will decrease approximately linearly with the extreme service from low temperature to high temperature. In addition, the stress concentration in the subsurface layer of SiC substrate can induce the evolution of its micro-structure, and the increase of the number of graphene layers on the substrate can effectively reduce the stress concentration distribution in the subsurface layer of the substrate.
      通信作者: 陈晶晶, chenjingjingfzu@126.com
    • 基金项目: 江西省教育厅科学技术研究(批准号: GJJ2202705)、南昌理工学院校级课题(批准号: NLZK-22-07, NLZK-22-01)、南昌市重点实验室建设项目 (批准号: 2020-NCZDSY-005)和南昌理工学院机械表/界面摩擦磨损与防护润滑研究中心资助的课题.
      Corresponding author: Chen Jing-Jing, chenjingjingfzu@126.com
    • Funds: Project supported by the Science and Technology Research Project of Department of Education of Jiangxi Province, China (Grant No. GJJ2202705), the University-level Research Center of Nanchang Institute of Technology (Grant Nos. NLZK-22-07, NLZK-22-01), the Nanchang Key Laboratory Construction Project of Jiangxi Province, China (Grant No. 2020-NCZDSY-005), and the Nanchang Institute of Technology Mechanical Watch/Interface Friction and Wear and Protective Lubrication Research Center, China.
    [1]

    Woodilla D, Buonomo M, Bar-On I, Katz R N, Whalen T 1993 J. Am. Chem. Soc. 76 249Google Scholar

    [2]

    Talwar D N, Sherbondy J C 1995 Appl. Phys. Lett. 67 3301Google Scholar

    [3]

    Demenet J L, Amer M, Tromas C 2013 Phy. Status Solidi 10 64Google Scholar

    [4]

    Miranda A, Cuevas J L, Ramos A E, Cruz-Irisson M 2009 Microelectron. J. 40 796Google Scholar

    [5]

    Wang G B, Lei Y Z 2005 Prog. Nat. Sci. 10 571Google Scholar

    [6]

    Sakhaee A 2009 Solid State Commun. 149 91Google Scholar

    [7]

    Morozov S V, Novoselow K S, Katsnelson M I 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [8]

    Balandin A A, Ghosh S, Bao W 2008 Nano Lett. 8 902Google Scholar

    [9]

    Tang Y L, Peng P, Wang S Y 2017 Chem. Mater. 29 8404Google Scholar

    [10]

    Li S Z, Li Q Y, Carpick R W 2016 Nature 539 541Google Scholar

    [11]

    Wang S Y, Han S B, Xin G Q 2018 Mater. Design 139 181Google Scholar

    [12]

    Xu K, Duan X Y, L Y 2020 J. Exp. Nanosci. 15 417Google Scholar

    [13]

    Miyoshi K, Buckley D H, Srinivasan M 1983 Am. Ceram. Soc. Bull. 62 454

    [14]

    Tapasztó O, Tapasztó L, Markò M 2011 Chem. Phys. Lett. 511 340Google Scholar

    [15]

    Li Q, Zhang Y, Gong H 2015 Ceram. Int. 41 13547Google Scholar

    [16]

    Kun P, Tapasztó O, Wéber F 2012 Ceram. Int. 38 211Google Scholar

    [17]

    Shin J H, Hong S H 2014 J. Eur. Ceram. Soc. 34 1297Google Scholar

    [18]

    Dusza J, Morgiel J, Duszová A 2012 J. Eur. Ceram. Soc. 32 3389Google Scholar

    [19]

    Nieto A, Bisht A, Lahiri D L 2017 Int. Mater. Rev. 62 241Google Scholar

    [20]

    李炯利, 王旭东, 武岳, 曹振, 郭建强, 张海平 2018 稀有金属 42 252

    Li J L, Wang X D, Wu Y, Cao Z, Guo J Q, Zhang H P 2018 Chin. J. Rare Metals 42 252

    [21]

    Nawaz A, Islam B, Mao W G, Lu C S, Shen Y G 2019 Int. J. Appl. Ceram. Tec. 16 706Google Scholar

    [22]

    Zhao K, Aghababaei R 2020 Phys. Rev. Mater. 4 103605Google Scholar

    [23]

    Juan C C, Tsai M H, Tsai C W, Hsu W L, Lin C M, Chen S K, Lin S J, Yeh J W 2016 Mater. Lett. 184 200Google Scholar

    [24]

    Subin L, Aviral V, Jiseong I, Kim B, Sang H O 2020 Nat. Comm. 11 2367Google Scholar

    [25]

    Wang J, Zhang X, Fang F, Chen R 2018 Appl. Sur. Sci. 455 608Google Scholar

    [26]

    Zhao L, Zhang J J, Janine P, Alam M, Hartmaier A 2021 Mater. Design 197 109223Google Scholar

    [27]

    Kondo S, Koyanagi T, Hinoki T 2014 J. Nucl. Mater. 448 487Google Scholar

    [28]

    Zhao S, Flanagan R, Hahn E N, Kad B, Remington B A, Wehrenberg C E, Cauble R, More K 2018 Acta Mater. 158 206Google Scholar

    [29]

    Branicio P S, Kalia R K, Nakano A, Vashishta P 2010 Appl. Phys. Lett. 97 111903Google Scholar

    [30]

    Xiang H G, Li H T, Fu T 2017 Acta Mater. 138 131Google Scholar

    [31]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int. 46 12686Google Scholar

    [32]

    Xiang H G, Guo W L 2022 Int. J. Plasticity 150 103197Google Scholar

    [33]

    Xiang H G, Guo W L 2022 Acta Mech. Sin. 38 121451Google Scholar

    [34]

    Oliver W C, Pharr G M 2011 J. Mater. Res. 7 1564

    [35]

    Fan X, Rui Z, Cao H, Fu R, Feng R, Yan C 2019 Materials 12 770Google Scholar

    [36]

    Oliver W C, Pharr G M 2011 J. Mater. Res. 19 3Google Scholar

    [37]

    Chen J J, Wu H, Bai S H 2023 Mat. Sci. Semicon. Proc. 165 107651Google Scholar

  • 图 1  SiC基底覆多层石墨烯薄膜的分子动力学模型

    Fig. 1.  Molecular dynamics model of SiC substrate coated with multilayer graphene films.

    图 2  SiC基底覆多层石墨烯的载荷与位移曲线关系

    Fig. 2.  Relation between load and displacement curve of SiC substrate coated with multilayer graphene.

    图 3  SiC基底覆多层石墨烯最大压深时的最大承载荷 (a) AA堆垛; (b) AB堆垛

    Fig. 3.  Maximum load bearing capacity of SiC substrate coated with multilayer graphene at the maximum pressing depth: (a) AA stack; (b) AB stack.

    图 4  SiC基底覆多层石墨烯的表面形貌受温度和石墨烯堆垛类型影响

    Fig. 4.  Surface morphology of multi-layer graphene coated with SiC substrate is affected by temperature and graphene stacking type.

    图 5  SiC基底覆多层石墨烯受载产生的剪切变形受温度和石墨烯堆垛类型影响

    Fig. 5.  Shear deformation of SiC substrate coated with multilayer graphene under load is affected by the temperature and the type of graphene stacking.

    图 6  SiC基底覆石墨烯层数的微结构演化和位错总长随使役温度的影响变化

    Fig. 6.  Effect of service temperature change on microstructure evolution and dislocation length of SiC substrate with multilayer graphene coated.

    图 7  SiC基底覆石墨烯层数的力学性能量化分析

    Fig. 7.  Quantitative analysis of mechanical properties of SiC substrate coated with graphene layers.

    图 8  SiC基底覆三层石墨烯的接触刚度随使役温度变化的影响

    Fig. 8.  Influence of the contact stiffness of SiC substrate coated with three layers of graphene with the change of service temperature.

    图 9  使役温度和石墨烯堆垛类型对界面接触质量分布影响

    Fig. 9.  Effect of service temperature and graphene stacking type on interface contact mass distribution.

    图 10  石墨烯堆垛类型对石墨烯和SiC基底的应力分布影响

    Fig. 10.  Effect of graphene stacking type on stress distribution of graphene and SiC substrates.

    表 1  SiC基底与石墨烯间的L-J势参数值与第一性原理计算验证

    Table 1.  L-J potential parameter values and first principles calculation verification between SiC substrate and graphene.

    Force description$ \sigma $/nm(MD)$ \varepsilon $/ eV(MD)$ \varepsilon $/ eV(DFT)
    C—Si0.40730.0089069890.00884012
    C—C0.38510.004553230.00461245
    下载: 导出CSV
    Baidu
  • [1]

    Woodilla D, Buonomo M, Bar-On I, Katz R N, Whalen T 1993 J. Am. Chem. Soc. 76 249Google Scholar

    [2]

    Talwar D N, Sherbondy J C 1995 Appl. Phys. Lett. 67 3301Google Scholar

    [3]

    Demenet J L, Amer M, Tromas C 2013 Phy. Status Solidi 10 64Google Scholar

    [4]

    Miranda A, Cuevas J L, Ramos A E, Cruz-Irisson M 2009 Microelectron. J. 40 796Google Scholar

    [5]

    Wang G B, Lei Y Z 2005 Prog. Nat. Sci. 10 571Google Scholar

    [6]

    Sakhaee A 2009 Solid State Commun. 149 91Google Scholar

    [7]

    Morozov S V, Novoselow K S, Katsnelson M I 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [8]

    Balandin A A, Ghosh S, Bao W 2008 Nano Lett. 8 902Google Scholar

    [9]

    Tang Y L, Peng P, Wang S Y 2017 Chem. Mater. 29 8404Google Scholar

    [10]

    Li S Z, Li Q Y, Carpick R W 2016 Nature 539 541Google Scholar

    [11]

    Wang S Y, Han S B, Xin G Q 2018 Mater. Design 139 181Google Scholar

    [12]

    Xu K, Duan X Y, L Y 2020 J. Exp. Nanosci. 15 417Google Scholar

    [13]

    Miyoshi K, Buckley D H, Srinivasan M 1983 Am. Ceram. Soc. Bull. 62 454

    [14]

    Tapasztó O, Tapasztó L, Markò M 2011 Chem. Phys. Lett. 511 340Google Scholar

    [15]

    Li Q, Zhang Y, Gong H 2015 Ceram. Int. 41 13547Google Scholar

    [16]

    Kun P, Tapasztó O, Wéber F 2012 Ceram. Int. 38 211Google Scholar

    [17]

    Shin J H, Hong S H 2014 J. Eur. Ceram. Soc. 34 1297Google Scholar

    [18]

    Dusza J, Morgiel J, Duszová A 2012 J. Eur. Ceram. Soc. 32 3389Google Scholar

    [19]

    Nieto A, Bisht A, Lahiri D L 2017 Int. Mater. Rev. 62 241Google Scholar

    [20]

    李炯利, 王旭东, 武岳, 曹振, 郭建强, 张海平 2018 稀有金属 42 252

    Li J L, Wang X D, Wu Y, Cao Z, Guo J Q, Zhang H P 2018 Chin. J. Rare Metals 42 252

    [21]

    Nawaz A, Islam B, Mao W G, Lu C S, Shen Y G 2019 Int. J. Appl. Ceram. Tec. 16 706Google Scholar

    [22]

    Zhao K, Aghababaei R 2020 Phys. Rev. Mater. 4 103605Google Scholar

    [23]

    Juan C C, Tsai M H, Tsai C W, Hsu W L, Lin C M, Chen S K, Lin S J, Yeh J W 2016 Mater. Lett. 184 200Google Scholar

    [24]

    Subin L, Aviral V, Jiseong I, Kim B, Sang H O 2020 Nat. Comm. 11 2367Google Scholar

    [25]

    Wang J, Zhang X, Fang F, Chen R 2018 Appl. Sur. Sci. 455 608Google Scholar

    [26]

    Zhao L, Zhang J J, Janine P, Alam M, Hartmaier A 2021 Mater. Design 197 109223Google Scholar

    [27]

    Kondo S, Koyanagi T, Hinoki T 2014 J. Nucl. Mater. 448 487Google Scholar

    [28]

    Zhao S, Flanagan R, Hahn E N, Kad B, Remington B A, Wehrenberg C E, Cauble R, More K 2018 Acta Mater. 158 206Google Scholar

    [29]

    Branicio P S, Kalia R K, Nakano A, Vashishta P 2010 Appl. Phys. Lett. 97 111903Google Scholar

    [30]

    Xiang H G, Li H T, Fu T 2017 Acta Mater. 138 131Google Scholar

    [31]

    Guo J, Chen J J, Wang Y Q 2020 Ceram. Int. 46 12686Google Scholar

    [32]

    Xiang H G, Guo W L 2022 Int. J. Plasticity 150 103197Google Scholar

    [33]

    Xiang H G, Guo W L 2022 Acta Mech. Sin. 38 121451Google Scholar

    [34]

    Oliver W C, Pharr G M 2011 J. Mater. Res. 7 1564

    [35]

    Fan X, Rui Z, Cao H, Fu R, Feng R, Yan C 2019 Materials 12 770Google Scholar

    [36]

    Oliver W C, Pharr G M 2011 J. Mater. Res. 19 3Google Scholar

    [37]

    Chen J J, Wu H, Bai S H 2023 Mat. Sci. Semicon. Proc. 165 107651Google Scholar

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] 于子恒, 马春红, 白少先. SiC表面圆环槽边缘效应实验研究.  , 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [4] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [5] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟.  , 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [6] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究.  , 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [7] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性.  , 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [8] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究.  , 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [9] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响.  , 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [10] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟.  , 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [11] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [12] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [13] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究.  , 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [14] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟.  , 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [15] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究.  , 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [16] 马颖, 陈尚达, 谢国锋. SiC晶界薄膜的变电荷分子动力学模拟.  , 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [17] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用.  , 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [18] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究.  , 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [19] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度.  , 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [20] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究.  , 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
计量
  • 文章访问数:  1849
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-03-08
  • 上网日期:  2024-03-27
  • 刊出日期:  2024-05-20

/

返回文章
返回
Baidu
map