-
采用分子动力学方法模拟研究了液态Cu56Zr44合金在不同冷速与压力P下的快速凝固过程, 并通过基于Honeycutt-Andersen键型指数的扩展团簇类型指数法对其微结构演变特性进行了分析. 结果表明: 快凝玻璃合金的局域原子组态主要是(12 12/1551)规则二十面体、以及 (12 8/1551 2/1541 2/1431)与(12 2/1441 8/1551 2/1661) 缺陷二十面体. 通过原子轨迹的逆向跟踪分析发现: 从过冷液体中遗传下来的二十面体对快凝合金的玻璃形成能力(GFA)具有重要影响, 不仅其可遗传分数Fi =N300 KTgi/NTg 与GFA密切相关, 而且其遗传起始温度(Tonset)与合金约化玻璃转变温度Trg = Tg/Tm也存在很好的对应关系.To explore the origin of glassy transition and glass-forming abilities (GFAs) of transition metal-transition metal (TM-TM) alloys from the microstructural point of view, a series of molecular dynamics (MD) simulation for the rapid solidification processes of liquid Cu56Zr44alloys at various cooling rates and pressures P are performed by using a LAMPS program. On the basis of Honeycutt-Andersen (H-A) bond-type index (ijkl), we propose an extended cluster-type index (Z, n/(ijkl)) method to characterize and analyze the microstructures of the alloy melts as well as their evolution in the rapid solidification. It is found that the majority of local atomic configurations in the rapidly solidified alloy are (12 12/1551) icosahedra, as well as (12 8/1551 2/1541 2/1431) and (12 2/1441 8/1551 2/1661) defective icosahedra, but no relationship can be seen between their number N(300 m K) and the glassy transition temperature Tg of rapidly solidified Cu56Zr44alloys. By an inverse tracking of atom trajectories from low temperatures to high temperatures the configuration heredity of icosahedral clusters in liquid is discovered to be an intrinsic feature of rapidly solidified alloys; the onset of heredity merely emerges in the super-cooled liquid rather than the initial alloy melt. Among these the (12 12/1551) standard icosahedra inherited from the super-cooled liquids at Tm-Tg is demonstrated to play a key role in the formation of Cu56Zr44 glassy alloys. Not only is their number N300 KTgP inherited from Tg to 300 K closely related to the GFA of rapidly solidified Cu56Zr44alloys, but a good correspondence of the onset temperatures of heredity (Tonset) with the reduced glass transition temperature (Trg= Tg/Tm) can be also observed. As for the influence of and P on the glassy transition, a continuous tracking of descendible icosahedra reveals that the high GFA of rapidly solidified Cu56Zr44 alloys caused by big and P can be attributed to their elevated inheritable fraction (fp and ftotal) above Tg.
[1] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[2] Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137
[3] Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48
[4] Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409
[5] Du X H, Huang J C 2008 Chin. Phys. B 17 0249
[6] Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459
[7] Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106
[8] Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102
[9] Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123
[10] Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508
[11] Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207
[12] Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203
[13] Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901
[14] Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520
[15] Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520
[16] Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 60 016103]
[17] Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202
[18] Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202
[19] Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101]
[20] Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75
[21] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[22] Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001
[23] Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901
[24] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816
[25] Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194
[26] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[27] Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201
[28] Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505
[29] Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 61 246102]
[30] Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910
[31] Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105
[32] Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903
[33] Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732
[34] Kazanc S 2006 Comput. Mater. Sci. 38 405
[35] Plimpton S 1995 J. Comput. Phys. 117 1
[36] Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501
[37] Okamoto H 2008 J. Phase Equilib. Diffu. 29 204
[38] Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054
[39] Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504
[40] Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506
[41] Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109
-
[1] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[2] Wu Y, Wang H, Cheng Y Q, Liu X J, Hui X D, Nieh T, Wang Y D, Lu Z P 2015 Sci. Rep. 5 12137
[3] Yu C Y, Liu X J, Zheng G P, Niu X R, Liu C T 2015 J. Alloys Comp. 627 48
[4] Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409
[5] Du X H, Huang J C 2008 Chin. Phys. B 17 0249
[6] Cao Q P, Li J F, Zhou R H 2008 Chin. Phys. Lett. 25 3459
[7] Yang L, Ge T, Guo G Q, Huang C L, Meng X F, Wei S H, Chen D, Chen L Y 2013 Intermetallics 34 106
[8] Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30 106102
[9] Laws K J, Miracle D B, Ferry M 2015 Nat. Commun. 6 8123
[10] Sha Z D, Xu B, Shen L, Zhang A H, Feng Y P, Li Y 2010 J. Appl. Phys. 107 063508
[11] Cheng Y Q, Sheng H W, Ma E 2008 Phys. Rev. B 78 014207
[12] Hao S G, Wang C Z, Li M Z, Napolitano R E, Ho K M 2011 Phys. Rev. B 84 064203
[13] Peng H L, Li M Z, Wang W H, Wang C Z, Ho K M 2010 Appl. Phys. Lett. 96 021901
[14] Zhang Y, Mattern N, Eckert J 2012 J. Appl. Phys. 111 053520
[15] Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520
[16] Guo G Q, Yang L, Zhang G Q 2011 Acta Phys. Sin. 60 016103 (in Chinese) [郭古青, 杨亮, 张国庆 2011 60 016103]
[17] Ma D, Stoica A D, Wang X L, Lu Z P, Xu M, Kramer M 2009 Phys. Rev. B 80 014202
[18] Wu Z W, Li M Z, Wang W H, Liu K X 2013 Phys. Rev. B 88 054202
[19] Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 (in Chinese) [文大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 62 196101]
[20] Wen D D, Peng P, Jiang Y Q, Tian Z A, Liu R S, Dong K J 2014 J. Non-Cryst. Solids 388 75
[21] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[22] Tian Z A, Liu R S, Dong K J, Yu A B 2011 Europhys. Lett. 96 36001
[23] Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901
[24] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816
[25] Fang X W, Wang C Z, Hao S G, Kramer M J, Yao Y X, Mendelev M I, Ding Z J, Napolitano R E, Ho K M 2011 Sci. Rep. 1 194
[26] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[27] Li M Z, Wang C Z, Hao S G, Kramer M J, Ho K M 2009 Phys. Rev. B 80 184201
[28] Liu A C Y, Neish M J, Stokol G, Buckley G A, Smillie L A, de Jonge M D, Ott R T, Kramer M J, Bourgeois L 2013 Phys. Rev. Lett. 110 205505
[29] Zheng N C, Liu H R, Liu R S, Liang Y C, Mo Y F, Zhou Q Y, Tian Z A 2012 Acta Phys. Sin. 61 246102 (in Chinese) [郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安 2012 61 246102]
[30] Cheng Y Q, Ma E 2008 Appl. Phys. Lett. 93 051910
[31] Zhang Y, Zhang F, Wang C Z, Mendelev M I, Kramer M J, Ho K M 2015 Phys. Rev. B 91 064105
[32] Setyawan A D, Kato H, Saida J, Inoue A 2007 Mater. Sci. Eng. A 499 903
[33] Qi L, Dong L F, Zhang S L, Ma M Z, Jing Q, Li G, Liu R P 2008 Comput. Mater. Sci. 43 732
[34] Kazanc S 2006 Comput. Mater. Sci. 38 405
[35] Plimpton S 1995 J. Comput. Phys. 117 1
[36] Mendelev M I, Sordelet D J, Kramer M J 2007 J. Appl. Phys. 102 043501
[37] Okamoto H 2008 J. Phase Equilib. Diffu. 29 204
[38] Mattern N, Schps A, Khn U, Acker J, Khvostikova O, Eckert J 2008 J. Non-Cryst. Solids 354 1054
[39] Kelton K, Lee G, Gangopadhyay A, Hyers R W, Rathz T J, Rogers J R, Robinson M B, Robinson D S 2003 Phys. Rev. Lett. 90 195504
[40] Zhang Y, Mattern N, Eckert J 2011 J. Appl. Phys. 110 093506
[41] Mendelev M I, Kramer M J, Ott R T, Sordelet D J 2009 Philo. Mag. 89 109
计量
- 文章访问数: 7068
- PDF下载量: 292
- 被引次数: 0