搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F等离子体刻蚀Si中Lag效应的分子动力学模拟

王建伟 宋亦旭 任天令 李进春 褚国亮

引用本文:
Citation:

F等离子体刻蚀Si中Lag效应的分子动力学模拟

王建伟, 宋亦旭, 任天令, 李进春, 褚国亮

Molecular dynamics simulation of Lag effect in fluorine plasma etching Si

Wang Jian-Wei, Song Yi-Xu, Ren Tian-Ling, Li Jin-Chun, Chu Guo-Liang
PDF
导出引用
  • 通过分子动力学模拟的方法对感应耦合等离子体刻蚀中Lag效应的产生机理进行了研究. 研究结果表明,在刻蚀过程中普遍存在Lag效应,宽槽的刻蚀率明显比窄槽的刻蚀率要高,这是由于宽槽更有利于产物从槽中的逸出;窄槽中产物从槽中逸出的速率较低,较多的产物拥挤在窄槽中降低了入射的F等离子体入射的速度,从而降低了F等离子体到达Si表面的能量,而相同条件下,刻蚀率随能量的降低而降低;另一方面,窄槽中入射的等离子体与槽壁的距离较近,使得入射的F更容易与槽壁表面的Si的悬挂键结合沉积在槽壁表面,使刻蚀出的槽宽度变窄,进一步影响到后继粒子的入射;Lag 效应随槽宽的减小而增强,随温度的升高而减弱,随入射粒子能量的升高而增强.
    We present a simulation model of fluorine plasma etching of silicon. A mechanism for lag effect in the silicon surface etched by an inductively coupled plasma is investigated using molecular dynamics simulation. The results show that the lag effect is popular in etching process and that the etching rate of wide grooves is higher than that of the narrow ones. A probable reason is that the wide groove is produced more easily than the narrow groove. And the escape rate of product in narrow groove is lower than in wide groove. This is because a lot of products huddle together in the groove, which causes the speed of incident ions to decrease, and thus the energy of ions reaching the surface is reduced. The etching rate increases with the decrease of energy under otherwise identical conditions. On the other hand, the incident F particles are more close to the sidewall, which leads to the fact that the incident F particles will be easier to deposit on the surface of the wall. Then the width of the groove becomes narrower and narrower. The subsequent incident particles will be more difficult to reach the bottom of the groove. The lag effect increases not only with the decrease of the width of the groove but also with the enhancement of energy, and it decreases with temperature rising.
    • 基金项目: 国家科技重大专项(批准号:2011ZX02403-2)资助的课题.
    • Funds: Project supported by the Major Projects of the Ministry of Science and Technology of China (Grant No. 2011ZX02403-2).
    [1]

    Li Z H, Yang Z C, Xiao Z C 2000 Sensors and Actuators A: Physical 83 24

    [2]

    Sang J P, Jngpal K, Dong H K 2003 IEEE International Electron Devices Meeting (IEDM) US 39 969

    [3]

    Ishihara K, Yung C F, Ayon A A 1999 J. Microelectronmech. Syst. 8 403

    [4]

    Wang B, Su S C, He M, Chen H, Wu W B, Zhang W W, Wang Q, Chen Y L, Gao Y, Zhang L, Zhu K B, Lei Y 2013 Chin. Phys. B 22 106802

    [5]

    Laermer F, Schilp A 1996 U. S. Patent 5501893

    [6]

    Zhang H F, Ma L, Liu S B 2009 Acta Phys. Sin. 58 1071 (in Chinese) [章海锋, 马力, 刘少斌 2009 58 1071]

    [7]

    Wang H Y, Huang Z Q 2005 Chin. Phys. 14 2560

    [8]

    Wang J L, Zhang G L, Liu Y F, Wang Y N, Liu C Z, Yang S Z 2004 Chin. Phys. 13 65

    [9]

    Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chinese) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 59 3331]

    [10]

    Humbird D, Graves D B 2004 J. Appl. Phys. 96 791

    [11]

    Abrams C F, Graves D B 1999 Appl. Phys. 86 5938

    [12]

    Abrams C F, Graves D B 2000 Thin Solid Films 374 150

    [13]

    Song Y K, Teng L, Xiong H 2013 Micronanoelectr. Technol. 50 177

    [14]

    Ruan Y, Ye S L, Zhang D C 2007 Micronanoelectr. Technol. 7 37 (in Chinese) [阮勇, 叶双莉, 张大成 2007 微纳电子技术 7 37]

    [15]

    Zhang H H, Yuan W Z, Ma Z B 2010 Aviation Precision Manufactur. Technol. 46 9 (in Chinese) [张洪海, 苑伟政, 马志波 2010 航空精密制造技术 46 9]

    [16]

    Zhang J, Huang Q A, Li W H 2006 Chin. J. Sensors and Actuators 19 93 (in Chinese) [张鉴, 黄庆安, 李伟华 2006 传感技术学报 19 93]

    [17]

    Stillinger F, Weber T A 1985 Phys. Rev. B 31 5262

    [18]

    Berendsen H J C, Postma J P M 1984 J. Chem. Phys. 81 3684

    [19]

    Abrams C F, Graves D B 2000 J. Vac. Sci. Technol. A 18 411

    [20]

    Hanson D E, Kress J D, Voter A F 1999 J. Chem. Phys. 110 5983

    [21]

    Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [宁建平, 秦尤敏, 赵成利, 苟富均 2011 60 045209]

    [22]

    Ohta H, Hamaguchi S 2001 J. Vac. Sci. Technol. A 19 2373

    [23]

    Gou F, Liang M C, Chen Z, Qian Q 2007 Appl. Surf. Sci. 253 8743

    [24]

    Gou F, Zen L T, Meng C L 2008 Thin Solid Films 516 1832

  • [1]

    Li Z H, Yang Z C, Xiao Z C 2000 Sensors and Actuators A: Physical 83 24

    [2]

    Sang J P, Jngpal K, Dong H K 2003 IEEE International Electron Devices Meeting (IEDM) US 39 969

    [3]

    Ishihara K, Yung C F, Ayon A A 1999 J. Microelectronmech. Syst. 8 403

    [4]

    Wang B, Su S C, He M, Chen H, Wu W B, Zhang W W, Wang Q, Chen Y L, Gao Y, Zhang L, Zhu K B, Lei Y 2013 Chin. Phys. B 22 106802

    [5]

    Laermer F, Schilp A 1996 U. S. Patent 5501893

    [6]

    Zhang H F, Ma L, Liu S B 2009 Acta Phys. Sin. 58 1071 (in Chinese) [章海锋, 马力, 刘少斌 2009 58 1071]

    [7]

    Wang H Y, Huang Z Q 2005 Chin. Phys. 14 2560

    [8]

    Wang J L, Zhang G L, Liu Y F, Wang Y N, Liu C Z, Yang S Z 2004 Chin. Phys. 13 65

    [9]

    Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chinese) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 59 3331]

    [10]

    Humbird D, Graves D B 2004 J. Appl. Phys. 96 791

    [11]

    Abrams C F, Graves D B 1999 Appl. Phys. 86 5938

    [12]

    Abrams C F, Graves D B 2000 Thin Solid Films 374 150

    [13]

    Song Y K, Teng L, Xiong H 2013 Micronanoelectr. Technol. 50 177

    [14]

    Ruan Y, Ye S L, Zhang D C 2007 Micronanoelectr. Technol. 7 37 (in Chinese) [阮勇, 叶双莉, 张大成 2007 微纳电子技术 7 37]

    [15]

    Zhang H H, Yuan W Z, Ma Z B 2010 Aviation Precision Manufactur. Technol. 46 9 (in Chinese) [张洪海, 苑伟政, 马志波 2010 航空精密制造技术 46 9]

    [16]

    Zhang J, Huang Q A, Li W H 2006 Chin. J. Sensors and Actuators 19 93 (in Chinese) [张鉴, 黄庆安, 李伟华 2006 传感技术学报 19 93]

    [17]

    Stillinger F, Weber T A 1985 Phys. Rev. B 31 5262

    [18]

    Berendsen H J C, Postma J P M 1984 J. Chem. Phys. 81 3684

    [19]

    Abrams C F, Graves D B 2000 J. Vac. Sci. Technol. A 18 411

    [20]

    Hanson D E, Kress J D, Voter A F 1999 J. Chem. Phys. 110 5983

    [21]

    Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [宁建平, 秦尤敏, 赵成利, 苟富均 2011 60 045209]

    [22]

    Ohta H, Hamaguchi S 2001 J. Vac. Sci. Technol. A 19 2373

    [23]

    Gou F, Liang M C, Chen Z, Qian Q 2007 Appl. Surf. Sci. 253 8743

    [24]

    Gou F, Zen L T, Meng C L 2008 Thin Solid Films 516 1832

  • [1] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究.  , 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [2] 张海宝, 陈强. 非热等离子体材料表面处理及功能化研究进展.  , 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [3] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟.  , 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟.  , 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [6] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应.  , 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [7] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [8] 弓志娜, 云峰, 丁文, 张烨, 郭茂峰, 刘硕, 黄亚平, 刘浩, 王帅, 冯仑刚, 王江腾. 光致电化学法提高垂直结构发光二极管出光效率的研究.  , 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [9] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究.  , 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [10] 常旭. 多层石墨烯的表面起伏的分子动力学模拟.  , 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [11] 戴隆贵, 禤铭东, 丁芃, 贾海强, 周均铭, 陈弘. 一种简单高效的制备硅纳米孔阵结构的方法.  , 2013, 62(15): 156104. doi: 10.7498/aps.62.156104
    [12] 郑树琳, 宋亦旭, 孙晓民. 基于三维元胞模型的刻蚀工艺表面演化方法.  , 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [13] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响.  , 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [14] 马颖, 孙玲玲, 周益春. BaTiO3铁电体中辐射位移效应的分子动力学模拟.  , 2011, 60(4): 046105. doi: 10.7498/aps.60.046105
    [15] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟.  , 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [16] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟.  , 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [17] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟.  , 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟.  , 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  6781
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-07
  • 修回日期:  2013-09-04
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map