-
通过分子动力学模拟的方法对感应耦合等离子体刻蚀中Lag效应的产生机理进行了研究. 研究结果表明,在刻蚀过程中普遍存在Lag效应,宽槽的刻蚀率明显比窄槽的刻蚀率要高,这是由于宽槽更有利于产物从槽中的逸出;窄槽中产物从槽中逸出的速率较低,较多的产物拥挤在窄槽中降低了入射的F等离子体入射的速度,从而降低了F等离子体到达Si表面的能量,而相同条件下,刻蚀率随能量的降低而降低;另一方面,窄槽中入射的等离子体与槽壁的距离较近,使得入射的F更容易与槽壁表面的Si的悬挂键结合沉积在槽壁表面,使刻蚀出的槽宽度变窄,进一步影响到后继粒子的入射;Lag 效应随槽宽的减小而增强,随温度的升高而减弱,随入射粒子能量的升高而增强.We present a simulation model of fluorine plasma etching of silicon. A mechanism for lag effect in the silicon surface etched by an inductively coupled plasma is investigated using molecular dynamics simulation. The results show that the lag effect is popular in etching process and that the etching rate of wide grooves is higher than that of the narrow ones. A probable reason is that the wide groove is produced more easily than the narrow groove. And the escape rate of product in narrow groove is lower than in wide groove. This is because a lot of products huddle together in the groove, which causes the speed of incident ions to decrease, and thus the energy of ions reaching the surface is reduced. The etching rate increases with the decrease of energy under otherwise identical conditions. On the other hand, the incident F particles are more close to the sidewall, which leads to the fact that the incident F particles will be easier to deposit on the surface of the wall. Then the width of the groove becomes narrower and narrower. The subsequent incident particles will be more difficult to reach the bottom of the groove. The lag effect increases not only with the decrease of the width of the groove but also with the enhancement of energy, and it decreases with temperature rising.
-
Keywords:
- molecular dynamics /
- Lag effect /
- etching /
- etching rate
[1] Li Z H, Yang Z C, Xiao Z C 2000 Sensors and Actuators A: Physical 83 24
[2] Sang J P, Jngpal K, Dong H K 2003 IEEE International Electron Devices Meeting (IEDM) US 39 969
[3] Ishihara K, Yung C F, Ayon A A 1999 J. Microelectronmech. Syst. 8 403
[4] Wang B, Su S C, He M, Chen H, Wu W B, Zhang W W, Wang Q, Chen Y L, Gao Y, Zhang L, Zhu K B, Lei Y 2013 Chin. Phys. B 22 106802
[5] Laermer F, Schilp A 1996 U. S. Patent 5501893
[6] Zhang H F, Ma L, Liu S B 2009 Acta Phys. Sin. 58 1071 (in Chinese) [章海锋, 马力, 刘少斌 2009 58 1071]
[7] Wang H Y, Huang Z Q 2005 Chin. Phys. 14 2560
[8] Wang J L, Zhang G L, Liu Y F, Wang Y N, Liu C Z, Yang S Z 2004 Chin. Phys. 13 65
[9] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chinese) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 59 3331]
[10] Humbird D, Graves D B 2004 J. Appl. Phys. 96 791
[11] Abrams C F, Graves D B 1999 Appl. Phys. 86 5938
[12] Abrams C F, Graves D B 2000 Thin Solid Films 374 150
[13] Song Y K, Teng L, Xiong H 2013 Micronanoelectr. Technol. 50 177
[14] Ruan Y, Ye S L, Zhang D C 2007 Micronanoelectr. Technol. 7 37 (in Chinese) [阮勇, 叶双莉, 张大成 2007 微纳电子技术 7 37]
[15] Zhang H H, Yuan W Z, Ma Z B 2010 Aviation Precision Manufactur. Technol. 46 9 (in Chinese) [张洪海, 苑伟政, 马志波 2010 航空精密制造技术 46 9]
[16] Zhang J, Huang Q A, Li W H 2006 Chin. J. Sensors and Actuators 19 93 (in Chinese) [张鉴, 黄庆安, 李伟华 2006 传感技术学报 19 93]
[17] Stillinger F, Weber T A 1985 Phys. Rev. B 31 5262
[18] Berendsen H J C, Postma J P M 1984 J. Chem. Phys. 81 3684
[19] Abrams C F, Graves D B 2000 J. Vac. Sci. Technol. A 18 411
[20] Hanson D E, Kress J D, Voter A F 1999 J. Chem. Phys. 110 5983
[21] Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [宁建平, 秦尤敏, 赵成利, 苟富均 2011 60 045209]
[22] Ohta H, Hamaguchi S 2001 J. Vac. Sci. Technol. A 19 2373
[23] Gou F, Liang M C, Chen Z, Qian Q 2007 Appl. Surf. Sci. 253 8743
[24] Gou F, Zen L T, Meng C L 2008 Thin Solid Films 516 1832
-
[1] Li Z H, Yang Z C, Xiao Z C 2000 Sensors and Actuators A: Physical 83 24
[2] Sang J P, Jngpal K, Dong H K 2003 IEEE International Electron Devices Meeting (IEDM) US 39 969
[3] Ishihara K, Yung C F, Ayon A A 1999 J. Microelectronmech. Syst. 8 403
[4] Wang B, Su S C, He M, Chen H, Wu W B, Zhang W W, Wang Q, Chen Y L, Gao Y, Zhang L, Zhu K B, Lei Y 2013 Chin. Phys. B 22 106802
[5] Laermer F, Schilp A 1996 U. S. Patent 5501893
[6] Zhang H F, Ma L, Liu S B 2009 Acta Phys. Sin. 58 1071 (in Chinese) [章海锋, 马力, 刘少斌 2009 58 1071]
[7] Wang H Y, Huang Z Q 2005 Chin. Phys. 14 2560
[8] Wang J L, Zhang G L, Liu Y F, Wang Y N, Liu C Z, Yang S Z 2004 Chin. Phys. 13 65
[9] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chinese) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 59 3331]
[10] Humbird D, Graves D B 2004 J. Appl. Phys. 96 791
[11] Abrams C F, Graves D B 1999 Appl. Phys. 86 5938
[12] Abrams C F, Graves D B 2000 Thin Solid Films 374 150
[13] Song Y K, Teng L, Xiong H 2013 Micronanoelectr. Technol. 50 177
[14] Ruan Y, Ye S L, Zhang D C 2007 Micronanoelectr. Technol. 7 37 (in Chinese) [阮勇, 叶双莉, 张大成 2007 微纳电子技术 7 37]
[15] Zhang H H, Yuan W Z, Ma Z B 2010 Aviation Precision Manufactur. Technol. 46 9 (in Chinese) [张洪海, 苑伟政, 马志波 2010 航空精密制造技术 46 9]
[16] Zhang J, Huang Q A, Li W H 2006 Chin. J. Sensors and Actuators 19 93 (in Chinese) [张鉴, 黄庆安, 李伟华 2006 传感技术学报 19 93]
[17] Stillinger F, Weber T A 1985 Phys. Rev. B 31 5262
[18] Berendsen H J C, Postma J P M 1984 J. Chem. Phys. 81 3684
[19] Abrams C F, Graves D B 2000 J. Vac. Sci. Technol. A 18 411
[20] Hanson D E, Kress J D, Voter A F 1999 J. Chem. Phys. 110 5983
[21] Ning J P, Qin Y M, Zhao C L, Gou F J 2011 Acta Phys. Sin. 60 045209 (in Chinese) [宁建平, 秦尤敏, 赵成利, 苟富均 2011 60 045209]
[22] Ohta H, Hamaguchi S 2001 J. Vac. Sci. Technol. A 19 2373
[23] Gou F, Liang M C, Chen Z, Qian Q 2007 Appl. Surf. Sci. 253 8743
[24] Gou F, Zen L T, Meng C L 2008 Thin Solid Films 516 1832
计量
- 文章访问数: 6781
- PDF下载量: 480
- 被引次数: 0