-
The freezing of water droplet is a ubiquitous phenomenon in nature. Although the freezing process of water droplet impacting on cold surfaces is widely observed on a macroscopic scale, the study of freezing process on a micro-scale is still deficient, and it is definitely difficult to study micro-droplets and nano-droplets using experimental methods due to the obstacles in both generation and observation. For these reasons, simulation methods using molecular dynamics (MD) have been proposed to study micro-droplets and nano-droplets, as molecular dynamics can trace each atom, count up the collective behavior of a group of atoms and describe the detail interaction between atoms. In this paper, a three-dimensional model is established by molecular dynamics simulation to study the freezing process of water droplets impinging on a cold solid surface on a nanoscale. We select the micro-canonical ensemble (NVE) as a statistical system and the TIP4P/ice model as a potential energy function to simulate oxygen atoms, hydrogen atoms and water molecules. The LJ/126 model is used to simulate the interaction between water molecules and solid atoms. Different wettability walls are simulated by adjusting the potential energy parameters. For all the simulations, the velocity-rescale method is used to keep the temperature constant and the Verlet algorithm is adopted to solve the Newton equations. In the velocity-rescale method, the temperature is calculated by using the profile-unbiased thermostat. The freezing process inside the water droplet is determined by the temperature distribution of water molecules along the vertical direction, which is more concise than by the location coordinates of the microscopic atoms. Through the numerical experimentations, we find that when the surface temperature decreases, the completely freezing time of drops is reduced; meanwhile, the time required for water temperature to drop down to the wall temperature is increased. Moreover, the heat transfer inside the water droplet slows down with the decreasing of wall hydrophilicity while the total freezing time is prolonged.
-
Keywords:
- water droplet /
- impinging /
- frozen /
- molecular dynamics
[1] Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615
[2] Jin Z, Wang Z, Sui D 2016 Int. J. Heat. Mass. Trans. 97 211
[3] Wang Y, Orol D, Owens J, Simpson K, Lee H J 2013 Mater. Sci. Appl. 04 347
[4] Dalili N, Edrisy A, Carriveau R 2009 Renew Sust. Energ. Rev. 13 428
[5] Zou L, Xu H J, Gong S K, Li D W 2010 China Safety Sci. J. 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科, 李大伟 2010 中国安全科学学报 20 105]
[6] Xiao S, He J, Zhang Z 2017 Acta Mech. Solida Sin. 30 224
[7] Yao Y, Li C, Zhang H, Yang R 2017 Appl. Surf. Sci. 419 52
[8] Zou M, Beckford S, Wei R, Ellis C, Hattonc G, Millerb M A 2011 Appl. Surf. Sci. 257 3786
[9] Zhang C, Liu H 2016 Phys. Fluids 28 260
[10] Quero M, Hammond D W, Purvis R, Smith F T 2006 AIAA 466
[11] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS Nano 4 7699
[12] Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos M 2011 Langmuir 27 3059
[13] Li H, Roisman I V, Tropea C 2011 Proceeding of the Sixth International Conference on Fluid Mechanics 1376 451
[14] Yang G, Guo K, Li N 2011 Int. J. Refrig. 34 2007
[15] Zhang D L, Yang X, Ang H S 2003 J. Propul. Power 18 87 (in Chinese) [张大林, 杨曦, 昂海松 2003 航空动力学报 18 87]
[16] Yang Q, Chang S N, Yuan X G 2002 Acta Aeronaut. Astronaut. Sin. 23 173 (in Chinese) [杨倩, 常士楠, 袁修干 2002 航空学报 23 173]
[17] Chen K, Cao Y H 2008 Aeronaut. Comput. Tech. 38 36 (in Chinese) [陈科, 曹义华 2008 航空计算技术 38 36]
[18] Sheng Q, Xing Y M, He C 2009 Aeronaut. Comput. Tech. 39 37 (in Chinese) [盛强, 邢玉明, 何超 2009 航空计算技术 39 37]
[19] Yuan Q Z, Zhao Y P 2010 Phys. Rev. Lett. 104 246101
[20] Xiao S, He J Y, Zhang Z X 2016 Nanoscale 8 14625
[21] Bi Y, Cao B, Li T 2017 Nat. Commun. 8 15372
[22] Abascal J L, Sanz E, García F R, Vega C 2005 J. Chem. Phys. 122 234511
[23] Hong S D, Ha M Y, Balachandar S 2009 J. Colloid Interf. Sci. 339 187
[24] Evans D J, Morriss G P 1986 Phys. Rev. Lett. 56 2172
[25] Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703 (in Chinese) [胡海豹, 何强, 余思潇, 张招柱, 宋东 2016 65 104703]
[26] Fitzner M, Sosso G C, Cox S J, Michaelides A 2015 J. Am. Chem. Soc. 137 13658
[27] Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y L, Wang J J 2016 Proc. Natl. Acad. Sci. USA 113 14739
-
[1] Jung S, Tiwari M K, Doan N V, Poulikakos D 2012 Nat. Commun. 3 615
[2] Jin Z, Wang Z, Sui D 2016 Int. J. Heat. Mass. Trans. 97 211
[3] Wang Y, Orol D, Owens J, Simpson K, Lee H J 2013 Mater. Sci. Appl. 04 347
[4] Dalili N, Edrisy A, Carriveau R 2009 Renew Sust. Energ. Rev. 13 428
[5] Zou L, Xu H J, Gong S K, Li D W 2010 China Safety Sci. J. 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科, 李大伟 2010 中国安全科学学报 20 105]
[6] Xiao S, He J, Zhang Z 2017 Acta Mech. Solida Sin. 30 224
[7] Yao Y, Li C, Zhang H, Yang R 2017 Appl. Surf. Sci. 419 52
[8] Zou M, Beckford S, Wei R, Ellis C, Hattonc G, Millerb M A 2011 Appl. Surf. Sci. 257 3786
[9] Zhang C, Liu H 2016 Phys. Fluids 28 260
[10] Quero M, Hammond D W, Purvis R, Smith F T 2006 AIAA 466
[11] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J 2010 ACS Nano 4 7699
[12] Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos M 2011 Langmuir 27 3059
[13] Li H, Roisman I V, Tropea C 2011 Proceeding of the Sixth International Conference on Fluid Mechanics 1376 451
[14] Yang G, Guo K, Li N 2011 Int. J. Refrig. 34 2007
[15] Zhang D L, Yang X, Ang H S 2003 J. Propul. Power 18 87 (in Chinese) [张大林, 杨曦, 昂海松 2003 航空动力学报 18 87]
[16] Yang Q, Chang S N, Yuan X G 2002 Acta Aeronaut. Astronaut. Sin. 23 173 (in Chinese) [杨倩, 常士楠, 袁修干 2002 航空学报 23 173]
[17] Chen K, Cao Y H 2008 Aeronaut. Comput. Tech. 38 36 (in Chinese) [陈科, 曹义华 2008 航空计算技术 38 36]
[18] Sheng Q, Xing Y M, He C 2009 Aeronaut. Comput. Tech. 39 37 (in Chinese) [盛强, 邢玉明, 何超 2009 航空计算技术 39 37]
[19] Yuan Q Z, Zhao Y P 2010 Phys. Rev. Lett. 104 246101
[20] Xiao S, He J Y, Zhang Z X 2016 Nanoscale 8 14625
[21] Bi Y, Cao B, Li T 2017 Nat. Commun. 8 15372
[22] Abascal J L, Sanz E, García F R, Vega C 2005 J. Chem. Phys. 122 234511
[23] Hong S D, Ha M Y, Balachandar S 2009 J. Colloid Interf. Sci. 339 187
[24] Evans D J, Morriss G P 1986 Phys. Rev. Lett. 56 2172
[25] Hu H B, He Q, Yu S X, Zhang Z Z, Song D 2016 Acta Phys. Sin. 65 104703 (in Chinese) [胡海豹, 何强, 余思潇, 张招柱, 宋东 2016 65 104703]
[26] Fitzner M, Sosso G C, Cox S J, Michaelides A 2015 J. Am. Chem. Soc. 137 13658
[27] Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y L, Wang J J 2016 Proc. Natl. Acad. Sci. USA 113 14739
Catalog
Metrics
- Abstract views: 9768
- PDF Downloads: 700
- Cited By: 0