Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides

Ding Ye-Zhang Ye Yin Li Duo-Sheng Xu Feng Lang Wen-Chang Liu Jun-Hong Wen Xin

Citation:

Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides

Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin
PDF
HTML
Get Citation
  • In this paper, molecular dynamics is used to simulate the self-assembly of carbon atoms and the growth of graphene on the surface of cemented carbide, which has some advantages, such as reducing manufacturing costs, shortening the experimental cycle, and optimizing the preparation parameters of graphene. A proper potential function is designed to simulate the formation of graphene on the WC ($10 \bar{1} 0$) surface and Co (0001) surface by a single carbon atom. The growth process of graphene, such as the deposition of carbon atoms, the formation of carbon chains with different lengths, the transformation about carbon chains into polygons, and the basic units and natural defects of graphene are investigated in detail. Three processes of self-repair of graphene defects, including carbon chain rotation, splitting and embedding, are described respectively. The effects of temperature and carbon deposition rate on the growth of high-quality graphene are also studied. The simulation results show that at low temperature, the mobility of carbon atoms is low and grown graphene contains a lot of defects, and the coverage of the substrate is low, which leads to low quality graphene to be prepared. High temperature promotes the migration of carbon atoms and helps to grow high quality graphene. However, high temperature can cause damage to the substrate and reduce the flatness of the growing graphene. At a higher deposition rate, the nucleation rate of graphene is higher and the distribution is more uniform. However, due to the different ability of each graphene nucleus to absorb carbon atoms, there are many macrocyclic defects in the graphene. The low deposition rate has a longer annealing time, which excessively stimulates the migration of carbon atoms. It leads to the aggregation of carbon atoms and reduce the quality of graphene. The proper deposition rate can ensure the nucleation density of graphene, and at the same time, it has enough time to form six membered rings and repair defects, which is conducive to the formation of the high quality graphene. Therefore, it is significantly important to design the appropriate deposition temperature and deposition rate for the growth of high-quality graphene. After optimizing the simulation parameters, high-quality graphene is successfully grown at 1300 K deposition temperature and 10 ps/C deposition rate.
      Corresponding author: Li Duo-Sheng, duosheng.li@nchu.edu.cn ; Xu Feng, xufeng@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51562027, 12062016, 51975287), the Key Project of Key Research and Development Program of Jiangxi Province, China (Grant No. 20201BBE51001), the Advantage Technology Innovation Team of Jiangxi Province, China (Grant No. 20181BCB24007), and the Key Research and Development Program of Jiangsu Province (Industrial Prospects and Key Core Technologies), China (Grant No. BE2021055).
    [1]

    Barfmal M, Montazeri A 2017 Ceram. Int. 43 17167Google Scholar

    [2]

    林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qin Qinghua, 邹伟 2018 67 246802Google Scholar

    Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G, Qin Q H, Zou W 2018 Acta Phys. Sin. 67 246802Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Kumar N, Salehiyan R, Chauke V, Joseph Botlhoko O, Setshedi K, Scriba M, Masukume M, Sinha Ray S 2021 FlatChem 27 100224Google Scholar

    [5]

    Manawi Y M, Ihsanullah, Samara A, Al-Ansari T, Atieh M A 2018 Materials 11 822Google Scholar

    [6]

    Shi Q, Tokarska K, Ta H Q, Yang X, Liu Y, Ullah S, Liu L, Trzebicka B, Bachmatiuk A, Sun J, Fu L, Liu Z, Rümmeli M H 2020 Adv. Mater. Interfaces 7 1902024Google Scholar

    [7]

    Dong Y, Guo S, Mao H, Xu C, Xie Y, Deng J, Wang L, Du Z, Xiong F, Sun J 2019 ACS Appl. Electron. Mater. 2 238Google Scholar

    [8]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C W, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352Google Scholar

    [9]

    Sein H, Ahmed W, Rego C A, Jones A N, Amar M, Jackson M, Polini R 2003 J. Phys. Condens. Matter. 15 S2961Google Scholar

    [10]

    Tian Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z, Li J, Jia X, Liu L, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [11]

    Kim J S, Park Y M, Bae M K, Kim C W, Kim D W, Shin D C, Kim T G 2018 Mod. Phys. Lett. B 32 1850236Google Scholar

    [12]

    Liu K, Ren E, Ma J, Cao Y, Du J, Ming W, Li X, Li B 2020 J. Mater. Sci. 55 4251Google Scholar

    [13]

    李锦锦, 李多生, 洪跃, 邹伟, 何俊杰 2017 66 217101Google Scholar

    Li J J, Li D S, Hong Y, Zou W, He J J 2017 Acta Phys. Sin. 66 217101Google Scholar

    [14]

    王泽, 李国禄, 王海斗, 徐滨士, 康嘉杰 2014 材料导报 28 91Google Scholar

    Wang Z, Li G L, Wang H D, Xu B S, Kang J J 2014 Mater. Rev. 28 91Google Scholar

    [15]

    颜超, 段军红, 何兴道 2010 59 8807Google Scholar

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807Google Scholar

    [16]

    Rong Y, Zhang L, He H 2021 Thin Solid Films 732 138778Google Scholar

    [17]

    Kametani N, Nakamura M, Yashiro K, Takaki T 2022 Comput. Mater. Sci. 209 111420Google Scholar

    [18]

    Nasim M, Vo T Q, Mustafi L, Kim B H, Lee C S, Chu W S, Chun D M 2019 Comput. Mater. Sci. 169 109091Google Scholar

    [19]

    Shibuta Y, Elliott J A 2009 Chem. Phys. Lett. 472 200Google Scholar

    [20]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2016 Nanoscale 8 921Google Scholar

    [21]

    白清顺, 窦昱昊, 何欣, 张爱民, 郭永博 2020 69 226102Google Scholar

    Bai Q S, Dou Y H, He X, Zhang A M, Guo Y B 2020 Acta Phys. Sin. 69 226102Google Scholar

    [22]

    Edin E, Blomqvist A, Lattemann M, Luo W, Ahuja R 2019 Int. J. Refract. Met. Hard Mater. 85 105054Google Scholar

    [23]

    Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520Google Scholar

    [24]

    Petisme M V G, Gren M A, Wahnström G 2015 Int. J. Refract. Met. Hard Mater. 49 75Google Scholar

    [25]

    Feng Q, Song X Y, Xie H X, Wang H B, Liu X M, Yin F X 2017 Mater. Design. 120 193Google Scholar

    [26]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [27]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [28]

    Morse P M 1929 Phys. Rev. 34 57Google Scholar

    [29]

    冯艳, 段海明 2011 原子与分子 28 251Google Scholar

    Feng Y, Duan H M 2011 J. At. Mol. Phys. 28 251Google Scholar

    [30]

    Jones J E 1924 Proc. R. Soc. London, Ser. A 106 463Google Scholar

    [31]

    Pun G P P, Mishin Y 2012 Phys. Rev. B 86 134116Google Scholar

    [32]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter. 14 783Google Scholar

    [33]

    Cao Q, Chen Y, Shao W, Ma X, Zheng C, Cui Z, Liu Y, Yu B 2020 J. Mol. Liq. 319 114218Google Scholar

    [34]

    Li N, Zhen Z, Zhang R, Mu R, Xu Z, He L 2022 Vacuum 196 110750Google Scholar

    [35]

    Yan H, Yang H, Lin S, He J, Zhang M, Li H 2021 Thin Solid Films 736 138921Google Scholar

    [36]

    Batzill M 2012 Surf. Sci. Rep. 67 83Google Scholar

    [37]

    Yu X, Zhang Z, Liu F, Pei J X, Tian X Y 2019 J. Alloys Compd. 806 1309Google Scholar

    [38]

    Zhang L, Zhu Y C, Teng W R, Xia T, Rong Y, Li N, Ma H Z 2017 Comput. Mater. Sci. 130 10Google Scholar

  • 图 1  石墨烯在WC-Co表面沉积的模拟模型

    Figure 1.  Simulation model of graphene on the surface of WC-Co

    图 2  在1300 K时, 弛豫20 ps的 WC-Co势能变化

    Figure 2.  Variation of the potential energy of WC-Co within 20 ps relaxation time at 1300 K.

    图 3  石墨烯在不同温度下的正面及侧面生长情况 (a), (c), (e) 分别为1100, 1300, 1500 K时的俯视图; (b), (d), (f) 分别为1100, 1300, 1500 K时的主视图

    Figure 3.  Front and side growth of graphene at different temperatures: (a), (c), (e) Top views at 1100, 1300, 1500 K; (b), (d), (f) front views at 1100, 1300, 1500 K.

    图 4  不同温度下, 生长石墨烯的质量 (a) 不同温度下, 石墨烯中五元、六元和七元碳环数; (b) 黑色折线表示不同温度下, 五元和六元碳环所占的比例; 蓝色折线表示不同温度下, 石墨烯的RMS值

    Figure 4.  Quality of growing graphene at different temperatures: (a) The number of five, six, and seven-membered carbon rings in graphene at different temperatures; (b) the black broken line represents the proportions of five and six-membered carbon rings at different temperatures; the blue broken line represents the RMS values of graphene at different temperatures.

    图 5  不同CDR下, 生长石墨烯的正视图、侧视图以及三维形貌图 (a), (b), (c), (d) CDR为2, 5, 10, 20 ps/C时的正视图; (e), (f), (g), (h) CDR为2, 5, 10, 20 ps/C时的侧视图; (i), (j), (k), (l) CDR为2, 5, 10, 20 ps/C时的三维形貌图

    Figure 5.  Front view, side view and topography of growing graphene under different CDRs: (a), (b), (c), (d) The front views at CDRs of 2, 5, 10, 20 ps/C; (e), (f), (g), (h) the side views at CDRs of 2, 5, 10, 20 ps/C; (i), (j), (k), (l) three-dimensional topography at CDRs of 2, 5, 10, 20 ps/C.

    图 6  不同CDR下生长石墨烯的碳环数目

    Figure 6.  Quality of graphene grown under different CDRs.

    图 7  在不同时间, 在硬质合金表面生长石墨烯的正视图 (a) 0.229 ns; (b) 0.250 ns; (c) 0.264 ns; (d) 0.405 ns; (e) 0.411 ns; (f) 0.587 ns; (g) 0.676 ns; (h) 1.649 ns; (i) 3.070 ns

    Figure 7.  Front views of graphene growth on cemented carbide at different times: (a) 0.229 ns; (b) 0.250 ns; (c) 0.264 ns; (d) 0.405 ns; (e) 0.411 ns; (f) 0.587 ns; (g) 0.676 ns; (h) 1.649 ns; (i) 3.070 ns.

    图 8  石墨烯缺陷自修复过程 (a), (b)碳链旋转过程; (c), (d)分裂生成过程; (e), (f)嵌入生成过程

    Figure 8.  Graphene defect self-healing process: (a), (b) The carbon chain rotation process; (c), (d) the splitting generation process; (e), (f) the intercalation generation process.

    表 1  WC的ABOP使用的拟合参数, W-C 系统的参数取自文献[23]

    Table 1.  Fit parameters used by the ABOP of WC, the parameters for the W-C system are taken from Ref. [23].

    W-WW-CC-C
    D0/eV5.418616.646.0
    r02.340951.905471.39
    β–11.385281.803702.1
    S1.927082.961491.22
    γ1.88227$ \times {10}^{-3} $7.2855$ \times {10}^{-2} $2.0813$ \times {10}^{-4} $
    α–10.458760.00.0
    c2.149691.10304330
    d0.171260.330183.5
    h–0.277800.751071.0
    R3.52.81.85
    D0.30.20.15
    DownLoad: CSV
    Baidu
  • [1]

    Barfmal M, Montazeri A 2017 Ceram. Int. 43 17167Google Scholar

    [2]

    林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qin Qinghua, 邹伟 2018 67 246802Google Scholar

    Lin K X, Li D S, Ye Y, Jiang W G, Ye Z G, Qin Q H, Zou W 2018 Acta Phys. Sin. 67 246802Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Kumar N, Salehiyan R, Chauke V, Joseph Botlhoko O, Setshedi K, Scriba M, Masukume M, Sinha Ray S 2021 FlatChem 27 100224Google Scholar

    [5]

    Manawi Y M, Ihsanullah, Samara A, Al-Ansari T, Atieh M A 2018 Materials 11 822Google Scholar

    [6]

    Shi Q, Tokarska K, Ta H Q, Yang X, Liu Y, Ullah S, Liu L, Trzebicka B, Bachmatiuk A, Sun J, Fu L, Liu Z, Rümmeli M H 2020 Adv. Mater. Interfaces 7 1902024Google Scholar

    [7]

    Dong Y, Guo S, Mao H, Xu C, Xie Y, Deng J, Wang L, Du Z, Xiong F, Sun J 2019 ACS Appl. Electron. Mater. 2 238Google Scholar

    [8]

    Kim S, Shin S, Kim T, Du H, Song M, Lee C W, Kim K, Cho S, Seo D H, Seo S 2016 Carbon 98 352Google Scholar

    [9]

    Sein H, Ahmed W, Rego C A, Jones A N, Amar M, Jackson M, Polini R 2003 J. Phys. Condens. Matter. 15 S2961Google Scholar

    [10]

    Tian Q, Huang N, Yang B, Zhuang H, Wang C, Zhai Z, Li J, Jia X, Liu L, Jiang X 2017 J. Mater. Sci. Technol. 33 1097Google Scholar

    [11]

    Kim J S, Park Y M, Bae M K, Kim C W, Kim D W, Shin D C, Kim T G 2018 Mod. Phys. Lett. B 32 1850236Google Scholar

    [12]

    Liu K, Ren E, Ma J, Cao Y, Du J, Ming W, Li X, Li B 2020 J. Mater. Sci. 55 4251Google Scholar

    [13]

    李锦锦, 李多生, 洪跃, 邹伟, 何俊杰 2017 66 217101Google Scholar

    Li J J, Li D S, Hong Y, Zou W, He J J 2017 Acta Phys. Sin. 66 217101Google Scholar

    [14]

    王泽, 李国禄, 王海斗, 徐滨士, 康嘉杰 2014 材料导报 28 91Google Scholar

    Wang Z, Li G L, Wang H D, Xu B S, Kang J J 2014 Mater. Rev. 28 91Google Scholar

    [15]

    颜超, 段军红, 何兴道 2010 59 8807Google Scholar

    Yan C, Duan J H, He X D 2010 Acta Phys. Sin. 59 8807Google Scholar

    [16]

    Rong Y, Zhang L, He H 2021 Thin Solid Films 732 138778Google Scholar

    [17]

    Kametani N, Nakamura M, Yashiro K, Takaki T 2022 Comput. Mater. Sci. 209 111420Google Scholar

    [18]

    Nasim M, Vo T Q, Mustafi L, Kim B H, Lee C S, Chu W S, Chun D M 2019 Comput. Mater. Sci. 169 109091Google Scholar

    [19]

    Shibuta Y, Elliott J A 2009 Chem. Phys. Lett. 472 200Google Scholar

    [20]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2016 Nanoscale 8 921Google Scholar

    [21]

    白清顺, 窦昱昊, 何欣, 张爱民, 郭永博 2020 69 226102Google Scholar

    Bai Q S, Dou Y H, He X, Zhang A M, Guo Y B 2020 Acta Phys. Sin. 69 226102Google Scholar

    [22]

    Edin E, Blomqvist A, Lattemann M, Luo W, Ahuja R 2019 Int. J. Refract. Met. Hard Mater. 85 105054Google Scholar

    [23]

    Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O E, Nordlund K, Salonen E, Albe K 2005 J. Appl. Phys. 98 123520Google Scholar

    [24]

    Petisme M V G, Gren M A, Wahnström G 2015 Int. J. Refract. Met. Hard Mater. 49 75Google Scholar

    [25]

    Feng Q, Song X Y, Xie H X, Wang H B, Liu X M, Yin F X 2017 Mater. Design. 120 193Google Scholar

    [26]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443Google Scholar

    [27]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [28]

    Morse P M 1929 Phys. Rev. 34 57Google Scholar

    [29]

    冯艳, 段海明 2011 原子与分子 28 251Google Scholar

    Feng Y, Duan H M 2011 J. At. Mol. Phys. 28 251Google Scholar

    [30]

    Jones J E 1924 Proc. R. Soc. London, Ser. A 106 463Google Scholar

    [31]

    Pun G P P, Mishin Y 2012 Phys. Rev. B 86 134116Google Scholar

    [32]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter. 14 783Google Scholar

    [33]

    Cao Q, Chen Y, Shao W, Ma X, Zheng C, Cui Z, Liu Y, Yu B 2020 J. Mol. Liq. 319 114218Google Scholar

    [34]

    Li N, Zhen Z, Zhang R, Mu R, Xu Z, He L 2022 Vacuum 196 110750Google Scholar

    [35]

    Yan H, Yang H, Lin S, He J, Zhang M, Li H 2021 Thin Solid Films 736 138921Google Scholar

    [36]

    Batzill M 2012 Surf. Sci. Rep. 67 83Google Scholar

    [37]

    Yu X, Zhang Z, Liu F, Pei J X, Tian X Y 2019 J. Alloys Compd. 806 1309Google Scholar

    [38]

    Zhang L, Zhu Y C, Teng W R, Xia T, Rong Y, Li N, Ma H Z 2017 Comput. Mater. Sci. 130 10Google Scholar

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lü Hao, Song Xiao-Yan. Hardness prediction of WC-Co cemented carbide based on machine learning model. Acta Physica Sinica, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [3] Yu Xin-Xiu, Li Duo-Sheng, Ye Yin, Lang Wen-Chang, Liu Jun-Hong, Chen Jing-Song, Yu Shuang-Shuang. Molecular dynamics simulation of effect of nickel transition layer on deposition of carbon atoms and graphene growth on cemented carbide surfaces. Acta Physica Sinica, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [4] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [5] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [7] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [8] Wang Yan-Qing, Li Jia-Hao, Peng Yong, Zhao You-Hong, Bai Li-Chun. Current-carrying friction behavior of graphene with intervention of interfacial current. Acta Physica Sinica, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [9] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [10] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [11] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [12] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [13] Han Tong-Wei, Li Pan-Pan. Investigation on the large tensile deformation and mechanical behaviors of graphene kirigami. Acta Physica Sinica, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [14] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [15] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [16] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [17] Li Zhi-Guo, Liu Wei, He Jing-Jing, Li Zu-Liang, Han An-Jun, Zhang Chao, Zhou Zhi-Qiang, Zhang Yi, Sun Yun. Influences of deposition rate in second stage on the Cu(In,Ga)Se2 thin film and device prepared by low-temperature process. Acta Physica Sinica, 2013, 62(3): 038803. doi: 10.7498/aps.62.038803
    [18] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [19] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] Cen Min, Zhang Yue-Guang, Chen Wei-Lan, Gu Pei-Fu. Influences of deposition rate and oxygen partial pressure on residual stress of HfO2 films. Acta Physica Sinica, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
Metrics
  • Abstract views:  4397
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2022
  • Accepted Date:  16 December 2022
  • Available Online:  09 February 2023
  • Published Online:  20 March 2023

/

返回文章
返回
Baidu
map