-
Perovskite solar cells (PSCs) with inverted structures have gained significant attentions in the field of photovoltaics. NiO is one of the commonly explored hole transport materials (HTMs) due to its excellent chemical stability compared to organic materials. Pure NiO is an insulator, but the presence of nickel vacancies introduces the formation of Ni3+ ions that give rise to p-type semiconductor properties. However, the low conductivity and poor interfacial contact between NiO and perovskite thin films still pose challenges in achieving high-performance inverted PSCs. To overcome these issues, this study used potassium acetate as a potassium source into nickel precursor and doped potassium ions (K+) into NiO nanocrystals. The introduction of K+ in NiO induces the formation of Ni3+ ions, thereby increasing the conductivity and hole mobility of NiO. Furthermore, K+-doped NiO demonstrated better interface contact with the perovskite film, facilitating the efficient separation of photo-generated charges with a strong photoluminescence quenching effect. Experimental results demonstrated that the optimal concentration of K+ doping is 3 mol%, and the PSCs prepared with K+-doped NiO exhibited a significant increase in efficiency, from 15.15% to 16.75%, primarily attributed to improvements in the short-circuit current density and fill factor. These improvements highlight the importance of enhanced conductivity and better interfacial contact achieved through K+ doping for charge carrier collection, effectively addressing the limitations of NiO in inverted PSCs.
-
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
[2] Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665
[3] Li S, Xiao Y, Su R, Xu W, Luo D, Huang P, Dai L, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J, Habib I, Dasgupta A, Guo D, Boeije Y, Zelewski S J, Lu Z, Huang T, Li Q, Wang J, Yan H, Chen H hsin, Li C, Lewis B A I, Wang D, Wu J, Zhao L, Han B, Wang J, Herz L M, Durrant J R, Novoselov K S, Lu Z hong, Gong Q, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi:10.1038/s41586-024-08159-5
[4] Wang Y, Lin R, Liu C, Wang X, Chosy C, Haruta Y, Bui A D, Li M, Sun H, Zheng X, Luo H, Wu P, Gao H, Sun W, Nie Y, Zhu H, Zhou K, Nguyen H T, Luo X, Li L, Xiao C, Saidaminov M I, Stranks S D, Zhang L, Tan H 2024 Nature Doi: 10.1038/s41586-024-08158-6
[5] Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148
[6] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759
[7] Barsoum M W Inst. Phys. Publ., 2003
[8] Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339
[9] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L 2015 Science. 350 944
[10] Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874
[11] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722
[12] Yu S, Xiong Z, Zhou H, Zhang Q, Wang Z, Ma F, Qu Z, Zhao Y, Chu X, Zhang X, You J 2023 Science. 382 1399
[13] Li L, Wei M, Carnevali V, Zeng H, Zeng M, Liu R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y, Li X 2024 Adv. Mater. 36 2303869
[14] Bai Y, Chen H, Xiao S, Xue Q, Zhang T, Zhu Z, Li Q, Hu C, Yang Y, Hu Z, Huang F, Wong K S, Yip H L, Yang S 2016 Adv. Funct. Mater. 26 2950
[15] Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616
[16] Zhao X, Zhou J, Wang S, Tan L, Li M, Li H, Yi C 2021 ACS Appl. Energy Mater. 4 6903
[17] Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813
[18] Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993
[19] Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159
[20] Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275
[21] Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103
[22] Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732
[23] Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771
[24] Liu S, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528
[25] Zhao X, Qiu Y, Wang M, Wu D, Yue X, Yan H, Fan B, Du S, Yang Y, Yang Y, Li D, Cui P, Huang H, Li Y, Park N G, Li M 2024 ACS Energy Lett. 9 2659
[26] Teo S, Guo Z, Xu Z, Zhang C, Kamata Y, Hayase S, Ma T 2019 ChemSusChem 12 518
Metrics
- Abstract views: 32
- PDF Downloads: 1
- Cited By: 0