-
氧化镍作为一种低成本、高稳定性的空穴传输材料, 在近些年被广泛地应用在反式钙钛矿太阳能电池中. 制备氧化镍空穴传输层最常用的方法是旋涂氧化镍纳米颗粒分散液, 因此对氧化镍颗粒粒度以及溶液加工性能提出了很高的要求. 本文通过精确控制合成过程中体系pH值, 实现了对氧化镍纳米颗粒粒度的调控, 进而制备了高质量的氧化镍空穴传输层. 实验表明合成体系pH值为9.5—9.8时, 可以制得平均粒径为5—10 nm的氧化镍纳米颗粒, 并且纳米颗粒具有良好的分散稳定性. 此外, 通过对氧化镍纳米颗粒进行结构成分分析, 发现由pH值调控的粒径变化并不会引起颗粒物质结构和成分的改变. 通过表面形貌分析, 由pH值调控获得的颗粒可制成致密且具有较小的粗糙度的薄膜, 该薄膜展现出良好的空穴抽取能力. 基于该薄膜的钙钛矿太阳能电池(MAPbI3)获得了17.39%的光电转化效率, 并且几乎没有迟滞现象. 本文的实验结果表明, 通过pH值精细调控氧化镍纳米颗粒粒度可以有效提升钙钛矿太阳能电池的性能. 本文的研究有望促进基于高性能氧化镍空穴传输层的钙钛矿太阳能电池研究.
-
关键词:
- 氧化镍 /
- 反式钙钛矿太阳能电池 /
- 纳米颗粒粒度
As a low-cost, high stable hole transport material, nickel oxide has been widely used in inverted structure perovskite solar cells in recent years. By far, the most common method of preparing nickel oxide hole transport layers is spin-coating pre-prepared nickel oxide nanoparticles (NiOx NPs), which puts forward high requirement for the particle sizes and solution processing capabilities of NiOx NPs. In this work, the sizes of NiOx NPs are precisely controlled by adjusting the pH value of the system in the synthesis process, and high-quality nickel oxide hole transport layers are then prepared. The experimental results exhibit that the NiOx NPs with sizes of 5–10 nm are obtained at a pH value in a range of 9.5–9.8. More interestingly, the obtained NiOx NPs have good dispersion stability and can achieve long-term dispersion in aqueous solution. Furthermore, the structural composition analysis of NiOx NPs shows that the pH value of the synthesis system does not have a significant effect on the material structure nor composition of the NiOx NP. Surface morphological analysis shows that the NiOx film prepared by the pH-controlled NiOx NPs is rather dense and particularly flat with small surface roughness. It is also found that the film exhibits good hole extraction capability. We also fabricate an inverted perovskite solar cell based on the NiOx film. The device structure is ITO/NiOx/CH3NH3PbI3/PC61BM/Bphen/Ag. It yields a good photovoltaic conversion efficiency (17.39%). In addition, the device is almost hysteresis-free. Our experimental results exhibit that the performance of perovskite solar cells can be effectively improved by precisely controlling the sizes of NiOx NPs through pH values. Our work is expected to facilitate the development of NiOx-based perovskite solar cells.-
Keywords:
- NiOx /
- inverted perovskite solar cell /
- nanoparticle size
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] National Renewable Energy Laboratory. Best Research-Cell Efficiencieshttps://www.nrel.gov/pv/cell-efficiency.html, 2022
[3] Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar
[4] Fei C, Li B, Zhang R, Fu H, Tian J, Cao G 2017 Adv. Eng. Mater. 7 1602017Google Scholar
[5] Wang M, Li H, Dai C, Tang J, Yin B, Wang H, Li J, Wu Y, Zhang C, Zhao Y S 2021 Sci. Chin. Chem. 64 629Google Scholar
[6] Lian J, Lu B, Niu F, Zeng P, Zhan X 2018 Small Methods 2 1800082Google Scholar
[7] Calió L, Kazim S, Grätzel M, Ahmad S 2016 Angew. Chem. Int. Ed. 55 14522Google Scholar
[8] Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng H X, Chu X, Peng X, Yuan Y, Zhang X, You J 2022 Science 377 531Google Scholar
[9] Chen J, Dong H, Zhang L, Li J, Jia F, Jiao B, Xu J, Hou X, Liu J, Wu Z 2020 J. Mater. Chem. A 8 2644Google Scholar
[10] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energy 89 106370Google Scholar
[11] Yu Y, Shang M, Wang T, Zhou Q, Hao Y, Pang Z, Cui D, Lian G, Zhang X, Han S 2021 J. Mater. Chem. C 9 15056Google Scholar
[12] Wang Y, Duan L, Zhang M, Hameiri Z, Liu X, Bai Y, Hao X 2022 Solar RRL 6 2200234Google Scholar
[13] Zhang F, Song J, Zhang L, Niu F, Hao Y, Zeng P, Niu H, Huang J, Lian J 2016 J. Mater. Chem. A 4 8554Google Scholar
[14] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[15] Yin X T, Guo Y X, Xie H X, Que W X, Kong L B 2019 Solar RRL 3 1900001Google Scholar
[16] Li M J, Li H Y, Zhuang Q X, et al. 2022 Angew. Chem. Int. Ed. 61 e202206914
[17] Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J 2016 ACS Nano 10 3630Google Scholar
[18] Jiang F, Choy W C H, Li X, Zhang D, Cheng J 2015 Adv. Mater. 27 2930Google Scholar
[19] He Q, Yao K, Wang X, Xia X, Leng S, Li F 2017 ACS Appl. Mater. Interfaces 9 41887Google Scholar
[20] Ru P, Bi E, Zhang Y, et al. 2020 Adv. Energy Mater. 10 1903487Google Scholar
[21] Coudun C, Grillon F, Hochepied J F 2006 Colloids Surf., A 280 23Google Scholar
[22] Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K Y 2017 ChemSusChem 10 3794Google Scholar
[23] Wang M, Sheng C X, Zhang C, Yao J 2018 J. Photonics Energy 8 032205
[24] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energ. 89 106370
[25] Li L, Wang Y, Wang X, et al. 2022 Nat. Energy 7 708Google Scholar
[26] Seki K 2016 Appl. Phys. Lett. 109 033905Google Scholar
-
图 1 合成体系pH为(a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8, (e) 10.3的NiOx纳米颗粒的TEM形貌图; (f) TEM图粒径统计; 纳米粒度仪测得的NiOx纳米颗粒; (g) 粒径分布; (h) 平均粒径
Fig. 1. TEM images of NiOx nanoparticles prepared at pH of (a) 9.0, (b) 9.2, (c) 9.5, (d) 9.8 and (e) 10.3; (f) particle size statistics for TEM image; (g) particle size distributions and (h) average particle size of NiOx nanoparticles measured by nanoparticle size analyzer
表 1 基于不同NiOx薄膜的钙钛矿太阳电池的光伏参数(每组10个器件)
Table 1. Photovoltaic parameters of perovskite solar cells based on different NiOx films averaged over 10 cells.
pH Jsc/(mA·cm–2) Voc/V FF/% PCEave/% PCEmax/% 9.2 17.99 ± 1.14 1.006 ± 0.024 69.89 ± 4.43 12.62 ± 0.65 13.76 9.5 19.72 ± 0.57 1.064 ± 0.006 79.02 ± 0.96 16.58 ± 0.49 17.39 9.8 19.39 ± 0.51 1.065 ± 0.005 79.86 ± 0.46 16.48 ± 0.45 17.17 10.3 19.05 ± 0.44 1.058 ± 0.004 77.56 ± 0.84 15.62 ± 0.41 16.49 -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] National Renewable Energy Laboratory. Best Research-Cell Efficiencieshttps://www.nrel.gov/pv/cell-efficiency.html, 2022
[3] Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar
[4] Fei C, Li B, Zhang R, Fu H, Tian J, Cao G 2017 Adv. Eng. Mater. 7 1602017Google Scholar
[5] Wang M, Li H, Dai C, Tang J, Yin B, Wang H, Li J, Wu Y, Zhang C, Zhao Y S 2021 Sci. Chin. Chem. 64 629Google Scholar
[6] Lian J, Lu B, Niu F, Zeng P, Zhan X 2018 Small Methods 2 1800082Google Scholar
[7] Calió L, Kazim S, Grätzel M, Ahmad S 2016 Angew. Chem. Int. Ed. 55 14522Google Scholar
[8] Zhao Y, Ma F, Qu Z, Yu S, Shen T, Deng H X, Chu X, Peng X, Yuan Y, Zhang X, You J 2022 Science 377 531Google Scholar
[9] Chen J, Dong H, Zhang L, Li J, Jia F, Jiao B, Xu J, Hou X, Liu J, Wu Z 2020 J. Mater. Chem. A 8 2644Google Scholar
[10] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energy 89 106370Google Scholar
[11] Yu Y, Shang M, Wang T, Zhou Q, Hao Y, Pang Z, Cui D, Lian G, Zhang X, Han S 2021 J. Mater. Chem. C 9 15056Google Scholar
[12] Wang Y, Duan L, Zhang M, Hameiri Z, Liu X, Bai Y, Hao X 2022 Solar RRL 6 2200234Google Scholar
[13] Zhang F, Song J, Zhang L, Niu F, Hao Y, Zeng P, Niu H, Huang J, Lian J 2016 J. Mater. Chem. A 4 8554Google Scholar
[14] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[15] Yin X T, Guo Y X, Xie H X, Que W X, Kong L B 2019 Solar RRL 3 1900001Google Scholar
[16] Li M J, Li H Y, Zhuang Q X, et al. 2022 Angew. Chem. Int. Ed. 61 e202206914
[17] Yin X, Chen P, Que M, Xing Y, Que W, Niu C, Shao J 2016 ACS Nano 10 3630Google Scholar
[18] Jiang F, Choy W C H, Li X, Zhang D, Cheng J 2015 Adv. Mater. 27 2930Google Scholar
[19] He Q, Yao K, Wang X, Xia X, Leng S, Li F 2017 ACS Appl. Mater. Interfaces 9 41887Google Scholar
[20] Ru P, Bi E, Zhang Y, et al. 2020 Adv. Energy Mater. 10 1903487Google Scholar
[21] Coudun C, Grillon F, Hochepied J F 2006 Colloids Surf., A 280 23Google Scholar
[22] Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K Y 2017 ChemSusChem 10 3794Google Scholar
[23] Wang M, Sheng C X, Zhang C, Yao J 2018 J. Photonics Energy 8 032205
[24] Zhang F, Ye S, Zhang H, Zhou F, Hao Y, Cai H, Song J, Qu J 2021 Nano Energ. 89 106370
[25] Li L, Wang Y, Wang X, et al. 2022 Nat. Energy 7 708Google Scholar
[26] Seki K 2016 Appl. Phys. Lett. 109 033905Google Scholar
计量
- 文章访问数: 4492
- PDF下载量: 65
- 被引次数: 0