搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiO/GaN p-n结紫外探测器及自供电技术

王顺利 王亚超 郭道友 李超荣 刘爱萍

引用本文:
Citation:

NiO/GaN p-n结紫外探测器及自供电技术

王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍

NiO/GaN p-n junction ultraviolet photodetector and self-powered technology

Wang Shun-Li, Wang Ya-Chao, Guo Dao-You, Li Chao-Rong, Liu Ai-Ping
PDF
HTML
导出引用
  • 紫外探测器在火灾预警、导弹跟踪以及紫外线杀菌消毒的剂量检测方面有着很重要的作用, 与人类生活息息相关. 随着探测系统集成化的发展, 对探测器的尺寸、能耗等方面的要求越来越严格, 需要外加电源工作的传统探测器已经不能满足这样的要求. 于是本文提出了一种基于NiO/GaN p-n结的紫外探测器. 利用磁控溅射的方法, 在高质量的n-GaN膜上(由金属有机化学气相沉积生长在蓝宝石衬底上)沉积一层p-NiO, 构建了NiO/GaN p-n结, 在 ± 0.5 V下显示出明显的二极管整流特性. 利用结区产生的内建电场, 器件可以在没有外加偏压的条件下工作. 0 V下对365 nm的紫外光显示出272.3 mA/W的响应度以及高达2.83 × 1014 Jones的探测率. 得益于薄膜良好的结晶性, 暗电流低至10–10 A, 开关比 > 103, 同时响应速度达到31 ms. 这些优异的性能显示出了基于NiO/GaN p-n结的器件在紫外探测领域广阔的应用前景, 为未来智能化集成发展提供了新的思路.
    Ultraviolet photodetector plays an important role in fire warning, missile tracking and dose detecting of ultraviolet sterilization and disinfection, which is closely related to human lives. With the development of integrated detection system, the requirements for the size and energy consumption of the detector are becoming more and more stringent. Traditional detector that requires an external power supply can no longer meet these requirements. Moreover, a traditional ultraviolet detector is mainly composed of first-generation semiconductors and second-generation semiconductors. These semiconductors have small band gaps and large cut-off wavelengths, and are more suitable for infrared detection. When used for implementing the ultraviolet detection, an additional layer is often required, which increases not only the volume but also the cost. Gallium nitride (GaN), as a third-generation semiconductor, has a band gap of 3.4 eV and a corresponding absorption edge of 365 nm. It is a natural ultraviolet detection material. At the same time, the excellent physical and chemical properties make the devices prepared by GaN have high stability. In recent years, some studies have shown that the GaN-based ultraviolet photodetectors have excellent responsiveness, but each of these detectors usually requires an external bias and has a slow response speed. Here, we propose a high responsivity, fast response speed and self-powered ultraviolet photodetector based on NiO/GaN p-n junction. By using the magnetron sputtering, a layer of 70 nm thick p-NiO film is deposited on a high-quality n-GaN film that has been grown on a sapphire substrate by the metal-organic chemical vapor deposition. The fabricated p-n junction shows obvious rectification characteristics at ± 0.5 V. Due to the existence of the built-in electric field, the device can work without externally applied bias. Under zero bias, the detector shows a responsivity of 272.3 mA/W for 365 nm ultraviolet light while the intensity is 50 μW/cm2, and has a detectivity as high as 2.83 × 1014 Jones. This indicates that the detector has a high sensitivity even for very weak light. Owing to the good crystallinity of the film, the dark current is as low as 10–10 A, the switching ratio is > 103, and the response speed reaches 31 ms. These excellent properties show the broad application prospects of the devices based on NiO/GaN p-n junctions in the field of self-powered ultraviolet detection, and thus providing new ideas for the future development of intelligent integration.
      通信作者: 郭道友, dyguo@zstu.edu.cn ; 刘爱萍, liuaiping1979@gmail.com
    • 基金项目: 浙江省自然科学基金(批准号: LY20F040005)和浙江理工大学科研启动基金(批准号: 20062224-Y)资助的课题
      Corresponding author: Guo Dao-You, dyguo@zstu.edu.cn ; Liu Ai-Ping, liuaiping1979@gmail.com
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F040005) and the Scientific Research Starting Foundation of Zhejiang Sci-Tech University, China (Grant No. 20062224-Y)
    [1]

    Guo D, Chen K, Wang S, Wu F, Liu A, Li C, Li P, Tan C, Tang W 2020 Phys.Rev. Appl. 13 024051Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    Wu C, He C, Guo D, Zhang F, Li P, Wang S, Liu A, Wu F, Tang W 2020 Mater. Today Phys. 12 100193Google Scholar

    [4]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Materials Today Physics 11 100157Google Scholar

    [5]

    Strite S, Morkoç H 1992 J. Vac. Sci. Technol., B 10 1237Google Scholar

    [6]

    Li J, Xi X, Lin S, Ma Z, Li X, Zhao L 2020 ACS Appl. Mater. Interfaces 12 11965Google Scholar

    [7]

    Wang W, Zheng Y, Li X, Li Y, Huang L, Li G 2018 J. Mater. Chem. C 6 3417Google Scholar

    [8]

    Lee J H, Lee W W, Yang D W, Chang W J, Kwon S S, Park W I 2018 ACS Appl. Mater. Interfaces 10 14170Google Scholar

    [9]

    Xiao Y, Zhang W G, Tan Z T, Pan G B, Peng Z 2020 Chem. Phys. Lett. 739 136981Google Scholar

    [10]

    Zhuo R, Wang Y, Wu D, Lou Z, Shi Z, Xu T, Xu J, Tian Y, Li X 2018 J. Mater. Chem. C 6 299Google Scholar

    [11]

    Guo D, Su Y, Shi H, Li P, Zhao N, Ye J, Wang S, Liu A, Chen Z, Li C, Tang W 2018 ACS Nano 12 12827Google Scholar

    [12]

    De Vittorio M, Potì B, Todaro M, Frassanito M, Pomarico A, Passaseo A, Lomascolo M, Cingolani R 2004 Sens. Actuators, A 113 329Google Scholar

    [13]

    Guo X, Williamson T, Bohn P 2006 Solid State Commun. 140 159Google Scholar

    [14]

    Su L, Zhang Q, Wu T, Chen M, Su Y, Zhu Y, Xiang R, Gui X, Tang Z 2014 Appl. Phys. Lett. 105 072106Google Scholar

    [15]

    Zhu Y, Liu K, Ai Q, Hou Q, Chen X, Zhang Z, Xie X, Li B, Shen D 2020 J. Mater. Chem. C 8 2719Google Scholar

    [16]

    Wang Y, Wu C, Guo D, Li P, Wang S, Liu A, Li C, Wu F, Tang W 2020 ACS Appl. Electron. Mater. 2 2032Google Scholar

    [17]

    Koike K, Goto T, Nakamura S, Wada S, Fujii K 2018 MRS Commun. 8 480Google Scholar

    [18]

    Wang H, Zhang B L, Wu G G, Wu C, Shi Z F, Zhao Y, Wang J, Ma Y, Du G T, Dong X 2012 Chin. Phys. Lett. 29 107304Google Scholar

    [19]

    Yu N, Li H, Qi Y 2018 Opt. Mater. Express 9 26Google Scholar

    [20]

    Li L, Liu Z, Wang L, zhang B, Liu Y, Ao J P 2018 Mater. Sci. Semicond. Process. 76 61Google Scholar

    [21]

    Davis E, Mott N 1970 Philos. Mag. 22 903Google Scholar

    [22]

    Mishra M, Gundimeda A, Garg T, Dash A, Das S, Vandana, Gupta G 2019 Appl. Surf. Sci. 478 1081Google Scholar

    [23]

    Sarkar K, Hossain M, Devi P, Rao K D M, Kumar P 2019 Adv. Mater. Interfaces 6 1900923Google Scholar

    [24]

    Li P, Shi H, Chen K, Guo D, Cui W, Zhi Y, Wang S, Wu Z, Chen Z, Tang W 2017 J. Mater. Chem. C 5 10562Google Scholar

    [25]

    Prakash N, Singh M, Kumar G, Barvat A, Anand K, Pal P, Singh S P, Khanna S P 2016 Appl. Phys. Lett. 109 242102Google Scholar

    [26]

    Zhou H, Gui P, Yang L, Ye C, Xue M, Mei J, Song Z, Wang H 2017 New J. Chem. 41 4901Google Scholar

  • 图 1  生长在蓝宝石衬底上的NiO薄膜的XRD图谱(a)和紫外-可见吸收图谱(b)以及NiO光学带隙(插图); 生长在GaN膜上的NiO薄膜的XRD图谱(c)和紫外-可见吸收图谱(d)以及GaN的光学带隙(插图)

    Fig. 1.  (a) XRD patterns and (b) UV-vis absorption spectra of the NiO film deposited on sapphire substrate (0001) plane. (panel (b) insert) Plots of (αhν)2 versus photon energy of the NiO film; (c) XRD patterns and (d) UV-vis absorption spectra of the NiO film deposited on GaN film. (panel (d) insert) Plots of (αhν)2 versus photon energy of the GaN film.

    图 2  (a) 在365 nm光照下和黑暗中的NiO MSM结构的I -V曲线, 插图NiO MSM结构示意图和0 V下的I -T曲线; (b) 在365 nm光照下和黑暗中的GaN MSM结构的I -V曲线, 插图为GaN MSM结构示意图和0 V下的I -T曲线; (c) 黑暗中NiO/GaN p-n结的I -V特性, 插图为NiO/GaN p-n结器件结构示意图; (d) 不同强度的365 nm光照下NiO/GaN p-n结的I -V特性

    Fig. 2.  (a) I-V curves of the NiO MSM structure in dark and under 365 nm light illumination, (insert) diagram of the NiO MSM structure and I -T curve under zero bias; (b) I -V curves of the GaN MSM structure in dark and under 365 nm light illumination, (insert) diagram of the GaN MSM structure and I -T curve under zero bias; (c) I -V curve of the NiO/GaN p-n junction in dark, (insert) diagram of the device based on NiO/GaN p-n junction; (d) I -V curves of the NiO/GaN p-n junction under 365 nm light with various light intensities.

    图 3  (a) 基于NiO/GaN p-n结的光电探测器结构示意图; (b) NiO/GaN p-n结的截面SEM图, 插图为镀有电极的p-n结截面SEM放大图

    Fig. 3.  (a) Schematic illustration of the fabricated prototype NiO/GaN p-n junction photodetector; (b) cross-sectional SEM image of the NiO/GaN p-n junction, where the insert is the enlargement cross-sectional SEM image of p-n junction with electrode plating.

    图 4  (a) 0 V电压下探测器对254和365 nm光照的I -T响应; (b) 对365 nm的光响应速度拟合; (c) NiO/GaN p-n结的能带图; (d) 不同偏压下探测器对365 nm光照的I -T响应

    Fig. 4.  (a) I -T curves of the photodetector under a zero bias at 254 and 365 nm illumination; (b) enlarged view of the rise/decay edges and the corresponding exponential fitting; (c) energy band diagrams of NiO/GaN p-n junction; (d) I -T curves of the photodetector under various biases with a 365 nm light illumination.

    图 5  (a) 0 V偏压下探测器对不同光强的365 nm光照的I-T响应; (b) 光电流与响应度随光强的变化; (c) 探测率随光强的变化

    Fig. 5.  (a) Time-dependent photoresponse of the photodetector under zero bias and a 365 nm light with various light intensities; (b) photocurrent and responsivity as a function of light intensity; (c) detectivity as a function of light intensity.

    表 1  基于GaN的自供电探测器件性能参数比较

    Table 1.  Self-powered device parameters comparison of photodetectors based on GaN from previous works and this work.

    PhotodetectorWavelengthResponsivity/(mA·W–1)Detectivity/JonesRise/Decay time/msRef.
    GaN/ZnO350 nm95.82.9 × 1012730/50[22]
    GaN/r-GO:Ag NPs360 nm2662.62 × 1011680/700[23]
    GaN/NiO365 nm150[20]
    GaN/Ga2O3365 nm54.49[24]
    r-GO/GaN350 nm1.541.45 × 101160/267[25]
    ZnO nanoarrays/CdS/GaN300 nm1762.5 × 1012350[26]
    NiO/GaN365 nm272.32.83 × 101431/37This work
    下载: 导出CSV
    Baidu
  • [1]

    Guo D, Chen K, Wang S, Wu F, Liu A, Li C, Li P, Tan C, Tang W 2020 Phys.Rev. Appl. 13 024051Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    Wu C, He C, Guo D, Zhang F, Li P, Wang S, Liu A, Wu F, Tang W 2020 Mater. Today Phys. 12 100193Google Scholar

    [4]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Materials Today Physics 11 100157Google Scholar

    [5]

    Strite S, Morkoç H 1992 J. Vac. Sci. Technol., B 10 1237Google Scholar

    [6]

    Li J, Xi X, Lin S, Ma Z, Li X, Zhao L 2020 ACS Appl. Mater. Interfaces 12 11965Google Scholar

    [7]

    Wang W, Zheng Y, Li X, Li Y, Huang L, Li G 2018 J. Mater. Chem. C 6 3417Google Scholar

    [8]

    Lee J H, Lee W W, Yang D W, Chang W J, Kwon S S, Park W I 2018 ACS Appl. Mater. Interfaces 10 14170Google Scholar

    [9]

    Xiao Y, Zhang W G, Tan Z T, Pan G B, Peng Z 2020 Chem. Phys. Lett. 739 136981Google Scholar

    [10]

    Zhuo R, Wang Y, Wu D, Lou Z, Shi Z, Xu T, Xu J, Tian Y, Li X 2018 J. Mater. Chem. C 6 299Google Scholar

    [11]

    Guo D, Su Y, Shi H, Li P, Zhao N, Ye J, Wang S, Liu A, Chen Z, Li C, Tang W 2018 ACS Nano 12 12827Google Scholar

    [12]

    De Vittorio M, Potì B, Todaro M, Frassanito M, Pomarico A, Passaseo A, Lomascolo M, Cingolani R 2004 Sens. Actuators, A 113 329Google Scholar

    [13]

    Guo X, Williamson T, Bohn P 2006 Solid State Commun. 140 159Google Scholar

    [14]

    Su L, Zhang Q, Wu T, Chen M, Su Y, Zhu Y, Xiang R, Gui X, Tang Z 2014 Appl. Phys. Lett. 105 072106Google Scholar

    [15]

    Zhu Y, Liu K, Ai Q, Hou Q, Chen X, Zhang Z, Xie X, Li B, Shen D 2020 J. Mater. Chem. C 8 2719Google Scholar

    [16]

    Wang Y, Wu C, Guo D, Li P, Wang S, Liu A, Li C, Wu F, Tang W 2020 ACS Appl. Electron. Mater. 2 2032Google Scholar

    [17]

    Koike K, Goto T, Nakamura S, Wada S, Fujii K 2018 MRS Commun. 8 480Google Scholar

    [18]

    Wang H, Zhang B L, Wu G G, Wu C, Shi Z F, Zhao Y, Wang J, Ma Y, Du G T, Dong X 2012 Chin. Phys. Lett. 29 107304Google Scholar

    [19]

    Yu N, Li H, Qi Y 2018 Opt. Mater. Express 9 26Google Scholar

    [20]

    Li L, Liu Z, Wang L, zhang B, Liu Y, Ao J P 2018 Mater. Sci. Semicond. Process. 76 61Google Scholar

    [21]

    Davis E, Mott N 1970 Philos. Mag. 22 903Google Scholar

    [22]

    Mishra M, Gundimeda A, Garg T, Dash A, Das S, Vandana, Gupta G 2019 Appl. Surf. Sci. 478 1081Google Scholar

    [23]

    Sarkar K, Hossain M, Devi P, Rao K D M, Kumar P 2019 Adv. Mater. Interfaces 6 1900923Google Scholar

    [24]

    Li P, Shi H, Chen K, Guo D, Cui W, Zhi Y, Wang S, Wu Z, Chen Z, Tang W 2017 J. Mater. Chem. C 5 10562Google Scholar

    [25]

    Prakash N, Singh M, Kumar G, Barvat A, Anand K, Pal P, Singh S P, Khanna S P 2016 Appl. Phys. Lett. 109 242102Google Scholar

    [26]

    Zhou H, Gui P, Yang L, Ye C, Xue M, Mei J, Song Z, Wang H 2017 New J. Chem. 41 4901Google Scholar

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响.  , 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能.  , 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究.  , 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强.  , 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [6] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展.  , 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [7] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究.  , 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [8] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用.  , 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [9] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究.  , 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [10] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [11] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究.  , 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [12] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究.  , 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] 周梅, 赵德刚. 以弱p型为有源区的新型p-n结构GaN紫外探测器.  , 2009, 58(10): 7255-7260. doi: 10.7498/aps.58.7255
    [15] 张爽, 赵德刚, 刘宗顺, 朱建军, 张书明, 王玉田, 段俐宏, 刘文宝, 江德生, 杨辉. 穿透型V形坑对GaN基p-i-n结构紫外探测器反向漏电的影响.  , 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [16] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响.  , 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [17] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法.  , 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [18] 谢自力, 张 荣, 修向前, 韩 平, 刘 斌, 陈 琳, 俞慧强, 江若琏, 施 毅, 郑有炓. 用于紫外探测器DBR结构的高质量AlGaN材料MOCVD生长及其特性研究.  , 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [19] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器.  , 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  6836
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-02-07
  • 上网日期:  2021-06-17
  • 刊出日期:  2021-06-20

/

返回文章
返回
Baidu
map