-
The evolution and role mechanisms of grain boundary structures during the deformation process of graphene are of great significance for understanding the deformation behavior of graphene and optimizing its mechanical properties. This article takes single-layer graphene as the research object and establishes a double crystal graphene model using the three-mode phase-field crystal method, deeply exploring the evolution mechanisms of dislocations at small-angle symmetrical tilt grain boundaries in graphene under strain. In view of the relaxation and deformation process, the relationship between the number of multiple dislocations and the grain boundary angle of graphene was studied at atomic scale, and the deformation and failure mechanism of double crystal graphene under tensile load was revealed, and it is also discussed from the aspect of the free energy.
It is found that, after relaxation, with the increase of grain boundary angle, the density of dislocations at the grain boundary decreases, and the number of specific types of dislocations (5|8|7 and 5|7 dislocations) increases. Under stress loading parallel to the grain boundary, the changes of free energy of the systems containing grain boundaries with different angles show the same trend: At first, they descend to the inflection point and then rise abnormally, and the dislocation behavior can not effectively alleviate the stress concentration caused by continuous loading in the system, leading to failure.
Under tensile load, the free energy’s change of the systems is divided into four stages, of which the stage (I): the dislocations at grain boundaries are slightly deformed but does not change its structure. The stage (Ⅱ): dislocations at the grain boundaries are transformed into 5|7 or 5|9 dislocation due to C-C bond fracture or rotation. Dislocations that are "incompatible" have higher energy, making them more conducive to improving the tensile properties of graphene. The stage (Ⅲ): the 5|7 and 5|9 dislocations, begin to fail, and the free energy shows a tendency to decrease significantly. The stage (Ⅳ): the double crystal graphene systems have completely failed. The system with a grain boundary angle of 10° exhibits the most substantial free energy decrease in Stages (Ⅰ), (Ⅱ), and (Ⅲ), and possesses the highest overall tensile strength.
This work contributes to understanding the micromechanical behavior of graphene at the atomic scale.-
Keywords:
- Phase-field crystal method /
- Graphene /
- Grain-boundaries /
- Dislocations
-
[1] Lin Z Q, Zhen W, Li H, Wang D J 2021 Acta. Metall. Sin. 57 111 (in Chinese) [林彰乾,郑伟,李浩,王东君 2021 金属学报 57 111]
[2] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
[3] Cao K, Feng S Z, Han Y, Gao L B, Hue Ly T, Xu Z P, Lu Y 2020 Nat. Commun. 11 284
[4] Liu J, Hei L F, Song J H, Li C M, Tang W Z, Chen G C, Lu F X 2014 Diam. Relat. Mater. 46 42
[5] Huang P Y, Ruiz-Vargas C S, Van d Z, Arend M., Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389
[6] Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870
[7] Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582
[8] Lei J C, He L C, Guo S S 2014 Carbon 124
[9] Zhou W Q 2019 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese) [周文权 2019 博士学位论文(陕西:西北工业大学) ]
[10] Shekhawat A, Ritchie R O 2016 Nat. Commun. 7 10546
[11] Zhang J F, Zhao J J, Lu J P 2012 ACS nano 6 2704
[12] Heo J, Han J 2023 Nanotechnology 34 415704
[13] Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946
[14] Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759
[15] Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098
[16] Liu Z, Suenaga K, Harris P J F, Iijima S 2009 Phys. Rev. Lett. 102 015501
[17] Zhao Y H, Tian X L, Zhao B, Sun Y, Guo H, Dong M, Liu H, Wang X, Guo Z, Umar A 2018 Sci. Adv. Mater. 10 1793
[18] Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y, Herlach D M 2018 Acta Mater. 148 86
[19] Guo Q W, Hou H, Wang K L, Li M X, Liaw P K, Zhao Y H 2023 npj Comput. Mater. 9 185
[20] Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Ferry M 2021 Sci. Adv. 7 eabf3039
[21] Xin T Z, Tang S, Ji F, Cui L Q, He B B, Lin X, Tian X L, Hou H, Zhao Y H, Ferry M 2022 Acta Mater. 239 118248
[22] Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044
[23] Chen L Q, Zhao Y H 2022 Prog. Mater. Sci. 100868
[24] Zhao Y H, Xin T Z, Tang S, Wang H F, Fang X D, Hou H 2024 MRS Bull. 49 613
[25] Zhao Y H, Xing H, Zhang L J, Huang H B, Sun D K, Dong X L, Shen Y X, Wang J C 2023 Acta Metall. Sin. (Engl. Lett.) 36 1749
[26] Zhao Y H 2024 npj Comput. Mater. 2 e44
[27] Zhao Y 2023 npj Comput. Mater. 9 e94
[28] Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta Mater. 159 16
[29] Song Z, Li H Q, Wang X N, Tian X L, Hou H, Zhao Y H 2023 J. Mater. Res. Technol. 27 6501
[30] Zhong L, Gao H J, Li X Y 2020 Extreme Mech. Lett. 37 100699
[31] Meca E, Lowengrub J, Kim H, Mattevi C, Shenoy V B 2013 Nano Lett. 13 5692
[32] Li H Q, Wang X N, Zhang H B, Tian X L, Hou H, Zhao Y H 2022 Front. Mater. 9 875519
[33] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 24570120
[34] Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng. 849 143485
[35] Zhao Y H, Liu K X, Zhang H B, Tian X L, Jiang Q L, Murugadoss V, Hou H 2022 Adv. Compos. Hybrid Mater. 5 2546
[36] Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, Zettl A 2011 ACS Nano 5 2142
[37] Akhukov M A, Fasolino A, Gornostyrev Y N, Katsnelson M I 2011 Phys. Rev. B 85 1092
[38] Hirvonen P, Ervasti M M, Fan Z, Jalalvand M, Seymour M, Vaez Allaei S M, Provatas N, Harju A, Elder K R, Ala-Nissila T 2016 Phys. Rev. B 94 035414
[39] Guo H J, Zhao Y H, Sun Y Y, Tian J Z, Hou H, Qi K W, Tian X L 2019 Micro Nanostruct. 129 163
[40] Elder K R, Grant M 2004 Phys. Rev. E 70 051605
Metrics
- Abstract views: 108
- PDF Downloads: 1
- Cited By: 0